已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.
(1)求证:四边形AECD是平行四边形;
(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.
已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.(1)求证:四边形AECD是平行四边形;(2)当∠B=2∠DCA时,求证:
答案:2 悬赏:60 手机版
解决时间 2021-02-05 13:41
- 提问者网友:那叫心脏的地方装的都是你
- 2021-02-05 00:34
最佳答案
- 五星知识达人网友:平生事
- 2020-06-01 17:44
证明:(1)∵在等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠B=∠DCB,
∵AE=DC,
∴AE=AB,
∴∠B=∠AEB,
∴∠DCB=∠AEB,
∴AE∥DC,
∴四边形AECD为平行四边形;
(2)∵AE∥DC,
∴∠EAC=∠DCA,
∵∠B=2∠DCA,∠B=∠DCB,
∴∠DCB=2∠DCA,
∴∠ECA=∠DCA,
∴∠EAC=∠ECA,
∴AE=CE,
∵四边形AECD为平行四边形,
∴四边形AECD为菱形.解析分析:(1)由等腰梯形的性质(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性质(等边对等角)证得∠DCB=∠AEB,即可得AE∥DC,则四边形AECD为平行四边形;
(2)根据平行线的性质,易得∠EAC=∠DCA,又由已知,由等量代换即可证得∠EAC=∠ECA,根据等角对等边,即可得AE=CE,则四边形AECD为菱形.点评:此题考查了等腰梯形的性质、平行四边形的判定、菱形的判定以及等腰三角形的判定与性质.解题的关键是仔细识图,应用数形结合思想解答.
∴∠B=∠DCB,
∵AE=DC,
∴AE=AB,
∴∠B=∠AEB,
∴∠DCB=∠AEB,
∴AE∥DC,
∴四边形AECD为平行四边形;
(2)∵AE∥DC,
∴∠EAC=∠DCA,
∵∠B=2∠DCA,∠B=∠DCB,
∴∠DCB=2∠DCA,
∴∠ECA=∠DCA,
∴∠EAC=∠ECA,
∴AE=CE,
∵四边形AECD为平行四边形,
∴四边形AECD为菱形.解析分析:(1)由等腰梯形的性质(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性质(等边对等角)证得∠DCB=∠AEB,即可得AE∥DC,则四边形AECD为平行四边形;
(2)根据平行线的性质,易得∠EAC=∠DCA,又由已知,由等量代换即可证得∠EAC=∠ECA,根据等角对等边,即可得AE=CE,则四边形AECD为菱形.点评:此题考查了等腰梯形的性质、平行四边形的判定、菱形的判定以及等腰三角形的判定与性质.解题的关键是仔细识图,应用数形结合思想解答.
全部回答
- 1楼网友:大漠
- 2019-07-25 06:06
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯