求解一道数列题已知{a(n)}是各项均为正数的等比数列,且a1+a2=2(1/a1+1/a2),(a
答案:2 悬赏:80 手机版
解决时间 2021-02-18 07:53
- 提问者网友:我一贱你就笑
- 2021-02-17 21:11
求解一道数列题已知{a(n)}是各项均为正数的等比数列,且a1+a2=2(1/a1+1/a2),(a
最佳答案
- 五星知识达人网友:怀裏藏嬌
- 2021-02-17 22:37
(1)把两式写为首项a1(记作a)和公比q的形式:第一式为a+aq=2(1/a+1/aq),化简的a^2=2/q;第二式为aq^2+aq^3+aq^4=64*(1/aq^2+1/aq^3+1/aq^4);整理得:aq^2*(1+q+q^2)=64*(1+q+q2)/(aq^4);约分,将第一式代入消去a,得q=2,进而得a=1,所以an=2^(n-1)(2)bn=(an+1/an)^2=an^2+1/(an^2)+2=4^(n-1)+4^(1-n)+2分组求和,4^(n-1)的前n项和为(4^n-1)/34^(1-n)的前n项和为1/(3*4^(n-1))+4/3所以Tn=(4^n-1)/3+1/(3*4^(n-1))+4/3+2n======以下答案可供参考======供参考答案1:a1+a2=2(1/a1+1/a2)=2(a1+a2)/(a1*a2)2/(a1*a2)=1 a1*a2=2(a3+a4+a5)=64(1/a3+1/a4+1/a5)=64(a3*a4+a3*a5+a4*a5)/a3*a4*a5=64(a3*a4+a4^2+a4*a5)/a4^3=64(a3+a4+a5)/a4^264/a4^2=1a4=8=a2^3/a1^2=a2^5/a1^2*a2^2=a2^5/4(此处设{a(n)}=A*B^n来推)a2=2{a(n)}=1/2*2^n(2)设b(n)=(an+1/an)的平方,求数列bn的前n项的和TnTn=(1+1/1)^2+……+(2^(n-1)+1/2^(n-1))^2=2n+1^2+……+2^(n-1)^2+1/1^2+……+1/2^(n-1)^21^2+……+2^(n-1)^2=2^0+……+2^(2n-2) 1/1^2+……+1/2^(n-1)^2=2^0+……+2^(2-2n) 设S=2^(2-2n)+……+2^(2n-2)2S=2^(3-2n)+……+2^(2n-1)3S=2^(2-2n)+……+2^(2n-1)2^2n-3S=2^2n-2^(2n-1)-……-2^(2-2n)=2^(2n-1)-2^(2n-2)-……-2^(2--2n2n1)=……=2^(2-2n) S=(2^2n-2^(2-2n) )/3Tn=S+1+2n=(2^2n-2^(2-2n) )/3+1+2n
全部回答
- 1楼网友:狂恋
- 2021-02-17 23:17
哦,回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯