如图1,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F.
(1)求证:△ABE≌△ADF;
(2)若∠BAE=∠EAF,求证:AE=BE;
(3)若对角线BD与AE、AF交于点M、N,且BM=MN(如图2).求证:∠EAF=2∠BAE.
如图1,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F.(1)求证:△ABE≌△ADF;(2)若∠BAE=∠EAF,求证:AE=BE;(3)若对角线BD与AE
答案:2 悬赏:20 手机版
解决时间 2021-12-21 07:35
- 提问者网友:末路
- 2021-12-20 19:37
最佳答案
- 五星知识达人网友:底特律间谍
- 2021-12-20 20:14
解:(1)∵菱形ABCD,
∴AB=AD,∠ABE=∠ADF,
又∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD,
∴△ABE≌△ADF.
(2)∵菱形ABCD,
∴AB∥CD,
又∵AF⊥CD,
∴AF⊥AB,
∴∠BAF=90°,又∠BAE=∠EAF,
∴∠BAE=45°,∠AEB=90°,
∴∠B=45°=∠BAE,
∴AE=BE.
(3)∵△ABE≌△ADF,
∴∠BAE=∠DAF,AB=AD,
∴∠ABM=∠ADN,
∴△ABM≌△ADN.
∴AM=AN,
又∵∠BAN=90°,BM=MN,
∴AM=MN=AN,
∴∠MAN=60°,
∴∠MAB=30°,
∴∠EAF=2∠BAE.解析分析:(1)根据菱形的性质,由AAS证明△ABE≌△ADF;
(2)欲证AE=BE,可以通过证明∠B=45°=∠BAE,根据等腰直角三角形的性质得出;
(3)由于∠BAN=90°,通过证明△AMN是等边三角形,得出∠MAN=60°,则有∠MAB=30°,从而证明∠EAF=2∠BAE.点评:本题是推理证明题,主要考查菱形的边的性质,同时综合利用全等三角形的判定方法及等腰三角形和等边三角形的性质.
∴AB=AD,∠ABE=∠ADF,
又∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD,
∴△ABE≌△ADF.
(2)∵菱形ABCD,
∴AB∥CD,
又∵AF⊥CD,
∴AF⊥AB,
∴∠BAF=90°,又∠BAE=∠EAF,
∴∠BAE=45°,∠AEB=90°,
∴∠B=45°=∠BAE,
∴AE=BE.
(3)∵△ABE≌△ADF,
∴∠BAE=∠DAF,AB=AD,
∴∠ABM=∠ADN,
∴△ABM≌△ADN.
∴AM=AN,
又∵∠BAN=90°,BM=MN,
∴AM=MN=AN,
∴∠MAN=60°,
∴∠MAB=30°,
∴∠EAF=2∠BAE.解析分析:(1)根据菱形的性质,由AAS证明△ABE≌△ADF;
(2)欲证AE=BE,可以通过证明∠B=45°=∠BAE,根据等腰直角三角形的性质得出;
(3)由于∠BAN=90°,通过证明△AMN是等边三角形,得出∠MAN=60°,则有∠MAB=30°,从而证明∠EAF=2∠BAE.点评:本题是推理证明题,主要考查菱形的边的性质,同时综合利用全等三角形的判定方法及等腰三角形和等边三角形的性质.
全部回答
- 1楼网友:一把行者刀
- 2021-12-20 21:06
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯