已知函数f(x)=4x-2x+1+3.
(1)当f(x)=11时,求x的值;
(2)当x∈[-2,1]时,求f(x)的最大值和最小值.
已知函数f(x)=4x-2x+1+3.(1)当f(x)=11时,求x的值;(2)当x∈[-2,1]时,求f(x)的最大值和最小值.
答案:2 悬赏:10 手机版
解决时间 2021-03-24 01:55
- 提问者网友:雨不眠的下
- 2021-03-23 12:03
最佳答案
- 五星知识达人网友:青尢
- 2021-03-23 13:33
解:(1)当f(x)=11,即4x-2x+1+3=11时,(2x)2-2?2x-8=0
∴(2x-4)(2x+2)=0
∵2x>02x+2>2,
∴2x-4=0,2x=4,故x=2
(2)f(x)=(2x)2-2?2x+3 (-2≤x≤1)
令∴f(x)=(2x-1)2+2
当2x=1,即x=0时,函数的最小值fmin(x)=2
当2x=2,即x=1时,函数的最大值fmax(x)=3解析分析:(1)f(x)=11,即4x-2x+1+3=11,以2x为单位,解关于x的方程,通过因式分解得(2x-4)(2x+2)=0,再讨论2x为的正数的性质,可得2x=4,故x=2成立;
(2)以2x为单位,将原函数化简为关于它的二次函数,根据二次函数的图象与性质,结合x∈[-2,1],找到函数取最大值和最小值对应的x,从而找出函数f(x)的最大值和最小值.
点评:本题考查了指数型复合函数的性质和应用,属于基础题.抓住题中的基本量与单位元,灵活地运用二次函数的图象与性质解题,是本题的关键.
∴(2x-4)(2x+2)=0
∵2x>02x+2>2,
∴2x-4=0,2x=4,故x=2
(2)f(x)=(2x)2-2?2x+3 (-2≤x≤1)
令∴f(x)=(2x-1)2+2
当2x=1,即x=0时,函数的最小值fmin(x)=2
当2x=2,即x=1时,函数的最大值fmax(x)=3解析分析:(1)f(x)=11,即4x-2x+1+3=11,以2x为单位,解关于x的方程,通过因式分解得(2x-4)(2x+2)=0,再讨论2x为的正数的性质,可得2x=4,故x=2成立;
(2)以2x为单位,将原函数化简为关于它的二次函数,根据二次函数的图象与性质,结合x∈[-2,1],找到函数取最大值和最小值对应的x,从而找出函数f(x)的最大值和最小值.
点评:本题考查了指数型复合函数的性质和应用,属于基础题.抓住题中的基本量与单位元,灵活地运用二次函数的图象与性质解题,是本题的关键.
全部回答
- 1楼网友:玩世
- 2021-03-23 15:02
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |