永发信息网

求一篇高三数学小论文

答案:1  悬赏:0  手机版
解决时间 2021-04-04 03:44
最好字数多一点,。最好是偏理论一点的,打的好的话加分

不要太扯大空的啊
字数有个几百字就够了
最佳答案
浅谈二次函数在高中阶段的应用

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。
一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射ƒ:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为ƒ(x)=ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知ƒ(x)= 2x2+x+2,求ƒ(x+1)
这里不能把ƒ(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型Ⅱ:设ƒ(x+1)=x2-4x+1,求ƒ(x)
这个问题理解为,已知对应法则ƒ下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。
一般有两种方法:
(1)把所给表达式表示成x+1的多项式。
ƒ(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得ƒ(x)=x2-6x+6
(2) 变量代换:它的适应性强,对一般函数都可适用。
令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而ƒ(x)= x2-6x+6
二、二次函数的单调性,最值与图象。
在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
类型Ⅳ设ƒ(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
求:g(t)并画出 y=g(t)的图象
解:ƒ(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1∈[t,t+1]即0≤t≤1,g(t)=-2
当t>1时,g(t)=ƒ(t)=t2-2t-1
当t<0时,g(t)=ƒ(t+1)=t2-2
t2-2,(t<0)
g(t)= -2,(0≤t≤1)
t2-2t-1, (t>1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。
三、二次函数的知识,可以准确反映学生的数学思维:
类型Ⅴ:设二次函数ƒ(x)=ax2+bx+c(a>0)方程ƒ(x)-x=0的两个根x1,x2满足0 (Ⅰ)当X∈(0,x1)时,证明X<ƒ(x) (Ⅱ)设函数ƒ(x)的图象关于直线x=x0对称,证明x0< 。
解题思路:
本题要证明的是x<ƒ(x),ƒ(x) (Ⅰ)先证明x<ƒ(x),令ƒ(x)=ƒ(x)-x,因为x1,x2是方程ƒ(x)-x=0的根,ƒ(x)=ax2+bx+c,所以能ƒ(x)=a(x-x1)(x-x2)
因为00,又a>0,因此ƒ(x) >0,即ƒ(x)-x>0.至此,证得x<ƒ(x)
根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2ƒ(0),所以当x∈(0,x1)时ƒ(x)<ƒ(x1)=x1,
即x<ƒ(x)
b2

4a

(Ⅱ) ∵ƒ(x)=ax2+bx+c=a(x+-)2+(c- ),(a>0)

函数ƒ(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,
∴x0=-=(x1+x2-)<,即x0=。
二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
石河子大学食品专业研究生好考吗?毕业后在新
文明上网的名言警句,关于网络的名言警句
罗山服务区到罗山汽车站打的多少钱
故作高深是什么意思
“自是日抱就犬,习示之,使勿动。” 的解释
这个练柔术的姑娘是谁?视频出自cute flexibl
怎么培养少儿问题艺术 如何提高孩子的学习效
察下列三角形数表:其中从第2行起,每行的每
弹簧测力计如何校零
单选题农民用于杀菌和选种的波尔多液,是由Cu
手机摄像头的玻璃碎了怎么办?
摩凡陀和欧米茄哪个好,浪琴 摩凡陀 比较
怎样写新闻
淘宝双12交话费交50送50怎么回事
对照片的赞美唯美句子,含有鹿字的句子
推荐资讯
宝宝脖子后面有淋巴结,求助
无人飞机怎样用一个遥控操作四台飞机同步
美人制造男主角叫什么名字
昂的偏旁是什么,田字格的占格,部首的正确书写
什么是包容性城镇化
求情侣名:倾一世红颜,来下半句。分男女用。
麻烦问一下Gudo-dong,Dong-gu 390 Daejeon, D
惠城区惠州斑樟湖社区居委会体育协会我想知道
aa风是什么
运用对写的诗句有哪些,有关通感的诗句
全国有多少叫陈贵军的
在△ABC中,∠C=90°,BC=16cm,∠BAC的平分
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?