已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条
答案:2 悬赏:0 手机版
解决时间 2021-01-04 16:03
- 提问者网友:像風在裏
- 2021-01-03 16:58
已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是________.
最佳答案
- 五星知识达人网友:渊鱼
- 2021-01-03 17:36
6解析分析:根据已知中函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|结合函数奇偶性的定义,我们可以求出函数为一个偶函数,则f(a2-3a+2)=f(a-1),可以转化为|a2-3a+2|=|a-1|,又由绝对值的几何意义,我们可得f(0)=f(1)=f(-1),可知a=2也满足要求,进而得到
全部回答
- 1楼网友:野慌
- 2021-01-03 19:00
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯