1g2=a,1g7=b,求log8 9.8=?
1g2=a,1g7=b,求log8 9.8=?
解:有个公式是这样的 log m^n(a)=1/n log m (a)(即:以m的n次方为底的a的对数=1/n 乘以 以m为底的a的对数)
∴原式=log 2^3(49/5)=1/3 log 2(49/5)=2/3 log 2(7/5)
又 lg2=a,lg2+lg5=lg2*5=1
∴lg5=1-a,而log2(7)=lg7/lg2=b/a,log2(5)=lg5/lg2=(1-a)/a;
∴原式=2/3 log 2(7/5)=2/3(log 2 (7)-log2(5))=2/3*[b/a-(1-a)/a]=2(a+b-1)/3a
log8 9.8
=1g9.8/1g8
=(1g98/10)/(31g2)
=(1g98-1g10)/(31g2)
=(1g2*49-1)/(31g2)
=(1g2+21g7-1)/(31g2)
=(a+2b-1)/3a
log8 9.8=(lg9.8)/lg8
=(lg98-lg10)/(3lg2)
=(lg49+lg2-lg10)/(3lg2)
=(2b+a-1)/(3a)