如图,在△ABC中,AB=41cm,BC=18cm,BC边上的中线AD=40cm.△ABC是等腰三角形吗?为什么?
答案:2 悬赏:40 手机版
解决时间 2021-12-23 13:13
- 提问者网友:未信
- 2021-12-22 17:15
如图,在△ABC中,AB=41cm,BC=18cm,BC边上的中线AD=40cm.△ABC是等腰三角形吗?为什么?
最佳答案
- 五星知识达人网友:过活
- 2021-12-22 17:31
解:△ABC是等腰三角形,
理由是:∵BC=18cm,BC边上的中线为AD,
∴BD=CD=9cm
∵AB=41cm,BD=9cm,AD=40cm
∴AB2=1681,
BD2+AD2=1681,
∴AB2=BD2+AD2,
∴AD⊥BC
∵BD=CD,
∴AC=AB
∴△ABC是等腰三角形.解析分析:由已知可得BD的长,再根据勾股定理的逆定理可判定AD垂直BC,从而可利用勾股定理求得AC的长,此时发现AB=AC,即该三角形是等腰三角形.点评:此题主要考查学生对勾股定理的逆定理及等腰三角形的判定线段的垂直平分线性质的理解及运用.
理由是:∵BC=18cm,BC边上的中线为AD,
∴BD=CD=9cm
∵AB=41cm,BD=9cm,AD=40cm
∴AB2=1681,
BD2+AD2=1681,
∴AB2=BD2+AD2,
∴AD⊥BC
∵BD=CD,
∴AC=AB
∴△ABC是等腰三角形.解析分析:由已知可得BD的长,再根据勾股定理的逆定理可判定AD垂直BC,从而可利用勾股定理求得AC的长,此时发现AB=AC,即该三角形是等腰三角形.点评:此题主要考查学生对勾股定理的逆定理及等腰三角形的判定线段的垂直平分线性质的理解及运用.
全部回答
- 1楼网友:归鹤鸣
- 2021-12-22 17:50
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯