a>0,b>0,a≠b,m.n是正整数,n>m,求证a^n+b^n>a^mb^(n-m)+a^(n-m)b^m
答案:1 悬赏:70 手机版
解决时间 2021-06-08 07:12
- 提问者网友:像風在裏
- 2021-06-08 01:13
a>0,b>0,a≠b,m.n是正整数,n>m,求证a^n+b^n>a^mb^(n-m)+a^(n-m)b^m
最佳答案
- 五星知识达人网友:春色三分
- 2021-06-08 01:39
a^n+b^n-a^mb^(n-m)-a^(n-m)b^m
=a^m(a^(n-m)-b^(n-m))-(a^(n-m)-b^(n-m))b^m
=(a^m-b^m)(a^(n-m)-b^(n-m))
1)a>b
a^m>b^m
a^(n-m)>b^(n-m)
原式>0
2)aa^mb^(n-m)+a^(n-m)b^m
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯