设f(x)是定义在(-∞,∞)上的周期为T的连续函数,试证明:对任意的常数a,都有∫〈上限a T下限a〉f(x)dx=∫〈上限T下限0〉f(x)d(x)成立.
设f(x)是定义在(-∞,∞)上的周期为T的连续函数,试证明:对任意的常数a,都有∫〈上限a T下限a〉f(x)dx=∫
答案:1 悬赏:60 手机版
解决时间 2021-05-02 00:28
- 提问者网友:谁的错
- 2021-05-01 05:41
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-05-01 06:24
看 ∫ [T,a+T] f﹙x﹚dx
令y=x-T.∫ [T,a+T] f﹙x﹚dx= ∫ [0,a] f﹙y﹚dy=∫ [0,a] f﹙x﹚dx
∫ [a,a+T] =∫ [a,0] +∫[0,T] +∫ [T,a+T]
=∫ [a,0] +∫[0,T] +∫ [0,a]
=∫[0,T]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯