【arccotx的导数】y=arcsinX、arccosX、arctanX、arccotX的导数.如题
答案:2 悬赏:30 手机版
解决时间 2021-03-04 17:30
- 提问者网友:不爱我么
- 2021-03-03 18:28
【arccotx的导数】y=arcsinX、arccosX、arctanX、arccotX的导数.如题
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-03-03 19:55
【答案】 都换成反函数,再用复合函数求导法.
——————————————————————
y = arcsinx
siny = x
cosy * y' = 1
y' = 1/cosy = 1/√(1 - sin²y) = 1/√(1 - x²)
——————————————————————
y = arccosx
cosy = x
- siny * y' = 1
y' = - 1/siny = - 1/√(1 - cos²y) = - 1/√(1 - x²)
——————————————————————
y = arctanx
tany = x
sec²y * y' = 1
y' = 1/sec²y = 1/(1 + tan²y) = 1/(1 + x²)
——————————————————————
y = arccotx
coty = x
- csc²y * y' = 1
y' = - 1/csc²y = - 1/(1 + cot²y) = - 1/(1 + x²)
——————————————————————
y = arcsinx
siny = x
cosy * y' = 1
y' = 1/cosy = 1/√(1 - sin²y) = 1/√(1 - x²)
——————————————————————
y = arccosx
cosy = x
- siny * y' = 1
y' = - 1/siny = - 1/√(1 - cos²y) = - 1/√(1 - x²)
——————————————————————
y = arctanx
tany = x
sec²y * y' = 1
y' = 1/sec²y = 1/(1 + tan²y) = 1/(1 + x²)
——————————————————————
y = arccotx
coty = x
- csc²y * y' = 1
y' = - 1/csc²y = - 1/(1 + cot²y) = - 1/(1 + x²)
全部回答
- 1楼网友:老鼠爱大米
- 2021-03-03 20:34
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯