验证哥德巴赫猜想:一个不小于6 的偶数可以表示为两个素数之和,如6=3+3,8=3+5,10=3+7
答案:2 悬赏:40 手机版
解决时间 2021-02-11 21:50
- 提问者网友:謫仙
- 2021-02-11 12:49
验证哥德巴赫猜想:一个不小于6 的偶数可以表示为两个素数之和,如6=3+3,8=3+5,10=3+7
最佳答案
- 五星知识达人网友:毛毛
- 2021-02-11 14:14
#include stdio.hbool prime(int n) {for(int i = 2; i if(n%i==0) return false;return true;}int main () {int m, n, count = 0;scanf(%d%d, &m, &n);for(int i = m; i for(int j = 2; j if (prime(j)&&(i-j)) { printf(%d=%d+%d , i, j, i-j); count++; if(count%5 == 0) printf(\n); } }}return 0;} #include stdio.h#include math.hint main(void){int count, i, j, k, m, n, number;scanf(%d%d, &m, &n);if(m % 2 != 0) m = m + 1;if(m >= 6){ count = 0; for(i = m; i for(j = 2; j number= 1; for(k=2;k if(j%k==0) number = 0; for(k=2;k if((i-j)%k==0) number = 0; if(number == 1) { printf(%d=%d+%d , i, j, i-j); count++; if(count%5 == 0) printf(\n); break; } } }}}居然是填空题,疯了……======以下答案可供参考======供参考答案1:表格(三):偶数表为两个奇质数之和的表法的数量——公式计算数与实际表法数之比Gc(N)≡ Ctwin × K × 4 / N × Sha(N/2)×( Sha(N)- Sha(N/2)); K ≡ 4.7593318809Ctwin ≡ 0.6601618158468; Sha(N)≡ 2 /(1+√(1-4/Ln(N)))× N/ Ln(N)HNGp(N)Sha(N)Sha(N/2)Gc(N)Gc / Gp1646969323043755729300333274.349155171875.98443755922.8541.0000044303821293938646082116003581899754.297300333274.34982134780.5051.00022867047319409079690118808995857185414.630442158083.119118824420.8391.000129837304258787729201544612911128545184.65581899754.297154477985.9621.000108085085323484661501893600431397058598.85720132249.812189389705.7791.000156647516388181593802237100821663346502.21857185414.630223726819.0721.000074815907452878526102575557311927811728.25993273148.864257596871.3481.000159733778517575458402910421932190736390.321128545184.65291074634.3351.000111466099582272390703241858642452328817.441263112051.68324214987.3171.00008983524
全部回答
- 1楼网友:未来江山和你
- 2021-02-11 14:56
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯