在一个等差数列{an}中,满足3a4=7a7,且a1>0 ,Sn是数列{an}前n项和.若Sn取得最大值,则n为多少?答案为17
答案:3 悬赏:0 手机版
解决时间 2021-11-30 15:22
- 提问者网友:凉末
- 2021-11-29 22:25
在一个等差数列{an}中,满足3a4=7a7,且a1>0 ,Sn是数列{an}前n项和.若Sn取得最大值,则n为多少?答案为17
最佳答案
- 五星知识达人网友:洒脱疯子
- 2021-11-29 22:44
答案是n=9.a1>0,d<0 ,数列为递减数列,要使数列差数列{an}的前n项和最大,是前n个正项相加即可。解答如下。
全部回答
- 1楼网友:山君与见山
- 2021-11-30 00:38
3a4=7a7,则4a1+33d=0,即a1+(33/4)d=0。因a1>0,则d<0,且a9>0,a10<0,则当Sn取得最大值时,n=9。(前面9项全是正的)
你的题目应该是:当Sn>0时,n的最大值是多少?
解答如下:
S17=(17/2)[a1+a17]=(17/2)[2a9]>0;
S18=(18/2)[a1+a18]=(18/2)[2a1+17d]<0。
从而当Sn>0时,最大的n是17。
你的题目应该是:当Sn>0时,n的最大值是多少?
解答如下:
S17=(17/2)[a1+a17]=(17/2)[2a9]>0;
S18=(18/2)[a1+a18]=(18/2)[2a1+17d]<0。
从而当Sn>0时,最大的n是17。
- 2楼网友:蕴藏春秋
- 2021-11-29 23:21
答案错了吧
解:设等差数列{an}的公差为d,
则由3a4=7a7得
3(a1+3d)=7(a1+6d)
整理得a1=-33d/4
而a1大于0,故d小于0,数列{an}为递减数列
又由a1=-33d/4得
an=a1+(n-1)d=(n-9.25)d
所以
当n大于等于1且小于等于9时,an大于零,Sn递增
当n大于等于10时,an小于,零Sn递减
故使Sn取得最大值的n为9
解:设等差数列{an}的公差为d,
则由3a4=7a7得
3(a1+3d)=7(a1+6d)
整理得a1=-33d/4
而a1大于0,故d小于0,数列{an}为递减数列
又由a1=-33d/4得
an=a1+(n-1)d=(n-9.25)d
所以
当n大于等于1且小于等于9时,an大于零,Sn递增
当n大于等于10时,an小于,零Sn递减
故使Sn取得最大值的n为9
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯