若抛物线x^2=2y的顶点是抛物线上到点A(0,a)距离最近的点,求a的取值范围
答案:1 悬赏:40 手机版
解决时间 2021-07-29 04:06
- 提问者网友:佞臣
- 2021-07-28 15:18
快点帮帮忙。。。。
最佳答案
- 五星知识达人网友:空山清雨
- 2021-07-28 16:22
作以(0,a)为圆心,a为半径的圆: x^2+(y-a)^2=a^2
联立方程组得:2y+y^2-2ay=0
y^2+(2-2a)y=0
y(y-(2a-2))=0
所以:y=0 及y=2a-2
如2a-2>0,则抛物线与圆将有三个交点(因y=2a-2对应正负两个x)
这时顶点不是在抛物线上距离点A(0,a)最近的点
如2a-2<=0,则y=2a-2<0不是方程的根,y^2+(2-2a)y=0 将只有y=0一个解,这时顶点是在抛物线上距离点A(0,a)最近的点
由2a-2<=0,得a≤1
∴0<a≤1
联立方程组得:2y+y^2-2ay=0
y^2+(2-2a)y=0
y(y-(2a-2))=0
所以:y=0 及y=2a-2
如2a-2>0,则抛物线与圆将有三个交点(因y=2a-2对应正负两个x)
这时顶点不是在抛物线上距离点A(0,a)最近的点
如2a-2<=0,则y=2a-2<0不是方程的根,y^2+(2-2a)y=0 将只有y=0一个解,这时顶点是在抛物线上距离点A(0,a)最近的点
由2a-2<=0,得a≤1
∴0<a≤1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯