1/1x3x5+1/3x5x7+1/5x7x9+1/7x9x11+1/9x11x13+1/11x13x15
答案:1 悬赏:70 手机版
解决时间 2021-03-31 17:54
- 提问者网友:焚苦与心
- 2021-03-31 11:15
1/1x3x5+1/3x5x7+1/5x7x9+1/7x9x11+1/9x11x13+1/11x13x15
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-03-31 11:29
分析:1/1x3x5=1/4×(1/1*3 -1/3*5)
1/3x5x7=1/4×(1/3*5 -1/5*7)
1/5x7x9=1/4×(1/5*7 - 1/7*9)
1/7*9*11=1/4×(1/7*9 -1/9*11)
.....................
1/2003x2005x2007=1/4×(1/2003*2005 -1/2005*207)
所有的等式相加有
1/1x3x5+1/3x5x7+1/5x7x9+.....+1/2003x2005x2007
=1/4×(1/1*3 -1/3*5 +1/3*5 -1/5*7+....+1/2003*2005-1/2005*2007)
=1/4×(1/1*3 - 1/2005*2007)
=335336/4024035
结论:1/n(n+1)(n+2)=1/2×[1/n(n+1) - 1/(n+1)(n+2)]
1/n(n+2)(n+4)=1/4×[1/n(n+2) - 1/(n+2)(n+4)]
1/3x5x7=1/4×(1/3*5 -1/5*7)
1/5x7x9=1/4×(1/5*7 - 1/7*9)
1/7*9*11=1/4×(1/7*9 -1/9*11)
.....................
1/2003x2005x2007=1/4×(1/2003*2005 -1/2005*207)
所有的等式相加有
1/1x3x5+1/3x5x7+1/5x7x9+.....+1/2003x2005x2007
=1/4×(1/1*3 -1/3*5 +1/3*5 -1/5*7+....+1/2003*2005-1/2005*2007)
=1/4×(1/1*3 - 1/2005*2007)
=335336/4024035
结论:1/n(n+1)(n+2)=1/2×[1/n(n+1) - 1/(n+1)(n+2)]
1/n(n+2)(n+4)=1/4×[1/n(n+2) - 1/(n+2)(n+4)]
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯