奥数②、把19拆开成若干个自然数得和,使乘积尽可能的大,求最大乘积。
答案:3 悬赏:30 手机版
解决时间 2021-02-06 05:38
- 提问者网友:缘字诀
- 2021-02-05 19:15
奥数②、把19拆开成若干个自然数得和,使乘积尽可能的大,求最大乘积。
最佳答案
- 五星知识达人网友:青尢
- 2021-02-05 20:09
这个很简单,我们奥数刚学过的,列式是这样的:
15=3*5 所以最大的乘积应该是3*3*3*3*3=243
15=3*5 所以最大的乘积应该是3*3*3*3*3=243
全部回答
- 1楼网友:独行浪子会拥风
- 2021-02-05 22:08
拆成特定个数,各个数尽量接近时积最大,以下讨论为这种分法
两个数时:9*10=90
三个数时:6*6*7=252
四个数时:5^3 * 4=500
五个数时:4^4 * 3=768
六个数时:3^5 * 4=972
七个数时:2^2 * 3^5=972
八个数时:2^5 * 3^3=864
九个数时:2^8 * 3=768
……
可知最大值为972
两个数时:9*10=90
三个数时:6*6*7=252
四个数时:5^3 * 4=500
五个数时:4^4 * 3=768
六个数时:3^5 * 4=972
七个数时:2^2 * 3^5=972
八个数时:2^5 * 3^3=864
九个数时:2^8 * 3=768
……
可知最大值为972
- 2楼网友:迟山
- 2021-02-05 21:34
仅作参考=2*2*3^5=972
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯