求证:等轴双曲线上任意一点到两渐近线的距离之积是常数
为什么我算下来等于 0 呢? 别人算下来都是(a^2)/2
求证:等轴双曲线上任意一点到两渐近线的距离之积是常数
答案:1 悬赏:60 手机版
解决时间 2021-04-04 03:30
- 提问者网友:疯子也有疯子的情调
- 2021-04-03 10:26
最佳答案
- 五星知识达人网友:人類模型
- 2021-04-03 12:03
请参照我下面的回答看看你的问题吧
设等轴双曲线的方程为:x²/a²-y²/a²=1,
即x²-y²=a²
两条渐进线方程分别为y=-x===>x+y+0=0和y=x===>x-y+0=0,
设双曲线上任意一点M(x0,y0),点M到两渐进线的距离分别为:
d1=|x0+y0|/√(1+1),d2=|x0-y0|/√(1+1),
则,d1*d2=(x0²-y0²)/2,而x0,y0满足双曲线方程,∴x0²-y0²=a²,
∴d1*d2=a²/2=常数
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |