已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于F点,∠A=60°,∠CEF=55°,求∠EFB的度数.
答案:2 悬赏:70 手机版
解决时间 2021-04-05 18:01
- 提问者网友:未信
- 2021-04-04 19:36
已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于F点,∠A=60°,∠CEF=55°,求∠EFB的度数.
最佳答案
- 五星知识达人网友:荒野風
- 2021-04-04 20:26
解:∵EF∥BC,∠CEF=55°,
∴∠ECD=∠CEF=55°,
∵CE是△ABC的一个外角平分线,
∴∠ACD=2∠ECD=2×55°=110°,
∵∠A=60°,
∴∠B=∠ACD-∠A=110°-60°=50°,
∵EF∥BC,
∴∠EFB=180°-∠B=180°-50°=130°.解析分析:根据两直线平行,内错角相等求出∠ECD=∠CEF,再根据角平分线的定义求出∠ACD,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B,再根据两直线平行,同旁内角互补求解即可.点评:本题考查了平行线的性质,三角形的角平分线的定义,是基础题,熟记性质是解题的关键.
∴∠ECD=∠CEF=55°,
∵CE是△ABC的一个外角平分线,
∴∠ACD=2∠ECD=2×55°=110°,
∵∠A=60°,
∴∠B=∠ACD-∠A=110°-60°=50°,
∵EF∥BC,
∴∠EFB=180°-∠B=180°-50°=130°.解析分析:根据两直线平行,内错角相等求出∠ECD=∠CEF,再根据角平分线的定义求出∠ACD,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B,再根据两直线平行,同旁内角互补求解即可.点评:本题考查了平行线的性质,三角形的角平分线的定义,是基础题,熟记性质是解题的关键.
全部回答
- 1楼网友:天凉才是好个秋
- 2021-04-04 21:21
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯