如图,在三角形ABC中,已知角ABC=90度,在AB上取一点E,以BE为直径的圆O恰与AC相切于点D,若AE=2cm,AD=4cm。
答案:3 悬赏:20 手机版
解决时间 2021-04-07 15:40
- 提问者网友:我没有何以琛的痴心不悔
- 2021-04-06 19:46
如图,在三角形ABC中,已知角ABC=90度,在AB上取一点E,以BE为直径的圆O恰与AC相切于点D,若AE=2cm,AD=4cm。
最佳答案
- 五星知识达人网友:迟山
- 2021-04-06 20:56
连接D、O。OD为圆半径。
因为AC为圆的切线,显然OD垂直于AD
(1)设圆的半径为r
那么在直角三角形AOD中
(r+AE)^2=AD^2+r^2
(r+2)^2=4^2+r^2
r^2+4r+4=16+r^2
4r=12
r=3
直径BE=2×3=6厘米
(2)△AOD与△ABC相似
所以AD/AB=OD/BC
即4/(2+6)=3/BC
BC=24/4=6
△ABC的面积=(1/2)×AB×BC
=(1/2)×8×6
=24cm^2
因为AC为圆的切线,显然OD垂直于AD
(1)设圆的半径为r
那么在直角三角形AOD中
(r+AE)^2=AD^2+r^2
(r+2)^2=4^2+r^2
r^2+4r+4=16+r^2
4r=12
r=3
直径BE=2×3=6厘米
(2)△AOD与△ABC相似
所以AD/AB=OD/BC
即4/(2+6)=3/BC
BC=24/4=6
△ABC的面积=(1/2)×AB×BC
=(1/2)×8×6
=24cm^2
全部回答
- 1楼网友:旧脸谱
- 2021-04-06 22:26
1、假设园半径为r则有
(r+2)(r+2)=r*r+4*4
求得r=3
2、根据三角形相似定理有
AO/AC=AD/AB=DO/BC
故求得BC=6
三角形ABC面积为BC*AB/2=6*8/2=24
(r+2)(r+2)=r*r+4*4
求得r=3
2、根据三角形相似定理有
AO/AC=AD/AB=DO/BC
故求得BC=6
三角形ABC面积为BC*AB/2=6*8/2=24
- 2楼网友:纵马山川剑自提
- 2021-04-06 21:50
解:(1)连接OD,记圆O的半径为r
∵以BE为直径的圆O恰与AC相切于点D
∴OE=OD=OB=r,OD⊥AC
∴根据勾股定理,OA^2=OD^2+AD^2
即(r+2)^2=r^2+4^2
∴解得r=3
∴圆O的直径BE=2r=6
(2)∵∠ABC=90°,OD⊥AC
∴△ADO∽△ABC
∴BC/AB=OD/AD
∵AB=AE+BE=8,OD=3,AD=4
∴BC=ABXOD/AD=8X3/4=6
∴S△ABC=ABXBC/2=8X6/2=24
∵以BE为直径的圆O恰与AC相切于点D
∴OE=OD=OB=r,OD⊥AC
∴根据勾股定理,OA^2=OD^2+AD^2
即(r+2)^2=r^2+4^2
∴解得r=3
∴圆O的直径BE=2r=6
(2)∵∠ABC=90°,OD⊥AC
∴△ADO∽△ABC
∴BC/AB=OD/AD
∵AB=AE+BE=8,OD=3,AD=4
∴BC=ABXOD/AD=8X3/4=6
∴S△ABC=ABXBC/2=8X6/2=24
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯