如图所示,已知△ABC是等边三角形,点D、B、C、E在同一条直线上,且∠DAE=120°.
(1)图中有相似三角形______对;
(2)探究DB、BC、CE之间的关系,并说明理由.
如图所示,已知△ABC是等边三角形,点D、B、C、E在同一条直线上,且∠DAE=120°.(1)图中有相似三角形______对;(2)探究DB、BC、CE之间的关系,
答案:2 悬赏:50 手机版
解决时间 2021-12-21 13:17
- 提问者网友:听门外雪花风
- 2021-12-21 04:19
最佳答案
- 五星知识达人网友:孤老序
- 2021-12-21 04:41
解:(1)∵△ABC是等边三角形,
∴∠ABC=∠ACB=∠BAC=60°.
∴∠D+∠DAB=60°,∠E+∠CAE=60°.
∵∠DAE=120°,
∴∠DAB+∠EAC=60°.
∴∠D=∠CAE,∠E=∠DAB.
∵∠D=∠D,∠E=∠E,
∴△DAE∽△DBA∽△ACE.
∴相似三角形共有3对.
(2)∵△DBA∽△ACE,
∴DB:AC=AB:CE.
∵AB=AC=BC,
∴BC2=DB?CE.解析分析:(1)根据相似三角形的判定及已知可得到题中存在的相似三角形;
(2)根据相似三角形的对应边成比例及已知,即可求得DB、BC、CE之间的关系.点评:此题考查了相似三角形的判定和性质:
①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;
③如果两个三角形的两个对应角相等,那么这两个三角形相似.
∴∠ABC=∠ACB=∠BAC=60°.
∴∠D+∠DAB=60°,∠E+∠CAE=60°.
∵∠DAE=120°,
∴∠DAB+∠EAC=60°.
∴∠D=∠CAE,∠E=∠DAB.
∵∠D=∠D,∠E=∠E,
∴△DAE∽△DBA∽△ACE.
∴相似三角形共有3对.
(2)∵△DBA∽△ACE,
∴DB:AC=AB:CE.
∵AB=AC=BC,
∴BC2=DB?CE.解析分析:(1)根据相似三角形的判定及已知可得到题中存在的相似三角形;
(2)根据相似三角形的对应边成比例及已知,即可求得DB、BC、CE之间的关系.点评:此题考查了相似三角形的判定和性质:
①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;
③如果两个三角形的两个对应角相等,那么这两个三角形相似.
全部回答
- 1楼网友:青尢
- 2021-12-21 04:49
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯