设f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函数g(x)=f(x
答案:1 悬赏:80 手机版
解决时间 2021-03-23 15:44
- 提问者网友:蓝莓格格巫
- 2021-03-22 15:59
设f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,若函数g(x)=f(x
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-03-22 17:02
∵f(x)是定义在R上的函数,且对任意x,y∈R,均有f(x+y)=f(x)+f(y)+2014成立,
∴取x=y=0,得:f(0)=f(0)+f(0)+2014,f(0)=-2014,
取y=-x,得到:f(0)=f(x)+f(-x)+2014,
∴f(x)+f(-x)=-4028.
记h(x)=f(x)+2014x2013+2014,
则h(-x)+h(x)=[f(-x)+2014(-x)2013+2014]+f(x)+2014x2013+2014
=f(x)+f(-x)+2014x2013-2014x2013+4028
=f(x)+f(-x)+4028
=0,
∴y=h(x)为奇函数.
记h(x)的最大值为A,则最小值为-A.
∴-A≤f(x)+2014x2013+2014≤A,
∴-A-2014≤f(x)+2014x2013≤A-2014,
∵g(x)=f(x)+2014x2013,
∴∴-A-2014≤g(x)≤A-2014,
∵函数g(x)有最大值M和最小值m,
∴M=A-2014,m=-A-2014,
∴M+m=A-2014+(-A-2014)
=-4028.
故答案为:-4028.
∴取x=y=0,得:f(0)=f(0)+f(0)+2014,f(0)=-2014,
取y=-x,得到:f(0)=f(x)+f(-x)+2014,
∴f(x)+f(-x)=-4028.
记h(x)=f(x)+2014x2013+2014,
则h(-x)+h(x)=[f(-x)+2014(-x)2013+2014]+f(x)+2014x2013+2014
=f(x)+f(-x)+2014x2013-2014x2013+4028
=f(x)+f(-x)+4028
=0,
∴y=h(x)为奇函数.
记h(x)的最大值为A,则最小值为-A.
∴-A≤f(x)+2014x2013+2014≤A,
∴-A-2014≤f(x)+2014x2013≤A-2014,
∵g(x)=f(x)+2014x2013,
∴∴-A-2014≤g(x)≤A-2014,
∵函数g(x)有最大值M和最小值m,
∴M=A-2014,m=-A-2014,
∴M+m=A-2014+(-A-2014)
=-4028.
故答案为:-4028.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯