两函数相乘相加、内外函数增减性判断f(x)+g(x)、f(x)g(x)、f[g(x)]在f(x)和g
答案:2 悬赏:70 手机版
解决时间 2021-02-03 21:32
- 提问者网友:棒棒糖
- 2021-02-03 13:36
两函数相乘相加、内外函数增减性判断f(x)+g(x)、f(x)g(x)、f[g(x)]在f(x)和g
最佳答案
- 五星知识达人网友:傲气稳了全场
- 2021-02-03 13:56
这样的函数组合大概可以分为两种:第一种是复合函数类型,第二种我称它为组合函数.如f(x)+g(x)类型的就叫组合函数,可以根据函数的定义域,分别判断f(x)和g(x)的单调性,如果f(x)是增函数,g(x)也是增函数,则“增+增”得增;若f(x)是增函数,g(x)是减函数,则f(x)-g(x)为增函数,即“增-减”得增;同样类比还有:“减+减”得减,“减-增”得减.例:y=x+x^2即为“增+增”得增;又如y=x-(1/x)在定义域(1,+∞)上的单调性,即为“增-减”得增;又如y=-x+(1/x)在定义域(1,+∞)上的单调性,即为“减+减”得减.复合函数类型:“同增异减”,即f(x)为增,g(x)为增,或f(x)为减,g(x)为减,两函数的增减性相同时复合后的函数f[g(x)]为增;反过来如果一个是增,一个是减,或者一个是减一个是增的话,那么复合后的函数f[g(x)]为减.例:y=2^(x^2+2x-3)是由指数函数和二次函数复合而来的,我们知道y=2^x在R上是增函数,我们只要找出二次函数的增区间,根据同为增的性质,即函数在(-1,+∞)上为增;在根据异位减,即函数在(-∞,-1)上为减.至于f(x)g(x)的情况要先进行化简,再归结到上面的两种情况.希望这样写你能看懂!======以下答案可供参考======供参考答案1:修养
全部回答
- 1楼网友:摆渡翁
- 2021-02-03 14:22
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯