高中数学圆锥曲线一道题 |x1-x2|这步写下详细计算步骤,谢谢!
答案:2 悬赏:60 手机版
解决时间 2021-11-09 11:04
- 提问者网友:像風在裏
- 2021-11-08 20:34
高中数学圆锥曲线一道题 |x1-x2|这步写下详细计算步骤,谢谢!
最佳答案
- 五星知识达人网友:持酒劝斜阳
- 2021-11-08 20:56
解:(2)设A(x1,y1),B(x2,y2),y1=kx1+m,y2=kx2+m
,则弦|AB|=√(1+k^2)*︱x1-x2︱,因为k1、k、k2成等比数列,所以k^2=k1*k2,而k1=y1/x1,k2=y2/x2===>y1y2/x1x2=k^2===>
(kx1+m)(kx2+m)/(x1x2)=k^2+m[m+k(x1+x2)]/(x1x2)=k^2
===>m[m+k(x1+x2)]/(x1x2)=0
显然m<>0,否则y=kx,A,O,B三点共线,===>m/x1x2<>0===>m+k(x1+x2)=0......... (2)
将y=kx+m 代入方程x^2+4y^2-4=0,化简,得
(1+4k^2)x^2+8kmx+4(m^2-1)=0............(1)
x1,x2是方程(1)的解,===>x1+x2= -8km/(4k^2+1)代入(2)式,得m-8k^2m/(4k^2+1)=0
而m不等于0,所以 1-8k^2/(4k^2+1)=0===>4k^2=1代入(1)式并化简,得 x^2+4kmx+2(m^2-1)=0.
所以 x1+x2=-4km ,x1x2=2(m^2-1)
三角形AOB的面积S=|AB|*h/2 , h为原点O到直线AB:y=kx+m的距离,所以h=|m|/√(1+k^2),而
|AB|=√(1+k^2)*︱x1-x2︱===>S=√(1+k^2)*︱x1-x2︱*h/2=|m|*|x1-x2|/2
︱x1-x2︱=√[(x1+x2)^2- 4x1x2]=√(-4km)^2-4*2(m^2-1)=2√(2-m^2)===>S=|m|*√(2-m^2)>=√6/3
===>√(2-m^2)m^2>=√6/3===>(2-m^2)m^2>=2/3===>1-√3/3<=m^2<=1+√3/3===>
√(1-√3/3)<=m<=√(1+√3/3).追问给图好吗,这个不好看懂追答图不好画,哪一步看不懂,请追问!!!,否则请采纳!!!!!
,则弦|AB|=√(1+k^2)*︱x1-x2︱,因为k1、k、k2成等比数列,所以k^2=k1*k2,而k1=y1/x1,k2=y2/x2===>y1y2/x1x2=k^2===>
(kx1+m)(kx2+m)/(x1x2)=k^2+m[m+k(x1+x2)]/(x1x2)=k^2
===>m[m+k(x1+x2)]/(x1x2)=0
显然m<>0,否则y=kx,A,O,B三点共线,===>m/x1x2<>0===>m+k(x1+x2)=0......... (2)
将y=kx+m 代入方程x^2+4y^2-4=0,化简,得
(1+4k^2)x^2+8kmx+4(m^2-1)=0............(1)
x1,x2是方程(1)的解,===>x1+x2= -8km/(4k^2+1)代入(2)式,得m-8k^2m/(4k^2+1)=0
而m不等于0,所以 1-8k^2/(4k^2+1)=0===>4k^2=1代入(1)式并化简,得 x^2+4kmx+2(m^2-1)=0.
所以 x1+x2=-4km ,x1x2=2(m^2-1)
三角形AOB的面积S=|AB|*h/2 , h为原点O到直线AB:y=kx+m的距离,所以h=|m|/√(1+k^2),而
|AB|=√(1+k^2)*︱x1-x2︱===>S=√(1+k^2)*︱x1-x2︱*h/2=|m|*|x1-x2|/2
︱x1-x2︱=√[(x1+x2)^2- 4x1x2]=√(-4km)^2-4*2(m^2-1)=2√(2-m^2)===>S=|m|*√(2-m^2)>=√6/3
===>√(2-m^2)m^2>=√6/3===>(2-m^2)m^2>=2/3===>1-√3/3<=m^2<=1+√3/3===>
√(1-√3/3)<=m<=√(1+√3/3).追问给图好吗,这个不好看懂追答图不好画,哪一步看不懂,请追问!!!,否则请采纳!!!!!
全部回答
- 1楼网友:时间的尘埃
- 2021-11-08 22:00
设A(x1,y1)、B(x2,y2)
所以AB=√[(x1-x2) ²+(y1-y2) ²],而AB在直线上,所以y1=kx1+m、y2=kx2+m
所以y1-y2=k(x1-x2)
所以AB=√(1+k²)*︱x1-x2︱=√(1+k²)*√[(x1+x2)²- 4x1x2]
因为k1、k、k2成等比数列,所以k²=k1*k2,而k1=y1/x1,k2=y2/x2.所以y1y2/x1x2=k²
将y=kx+m代入椭圆方程,可得x1x2=(4m²-4)/(4k²+1)、x1+x2=8km/(4k²+1)
同理可得y1y2=(m²-4k²)/(4k²+1)、y1+y2=2m/(4k²+1)
所以(m²-4k²)/(4k²+1)* (4k²+1) /(4m²-4),即(m²-4k²)/(4m²-4)=k²,则k²=1/4
S=1/2*AB*(原点到直线的距离)=1/2*AB*|m|/√(1+k²)
将AB=√(1+k²)*√[(x1+x2)²- 4x1x2]代入,则S=1/2*|m|*√[(x1+x2)²- 4x1x2]= 1/2*|m|*4√(k²+1-m²)/(4k²+1) ≥√6/3,所以|m|*√(5/4-m²) ≥√6/3,可得m范围追问3
所以AB=√[(x1-x2) ²+(y1-y2) ²],而AB在直线上,所以y1=kx1+m、y2=kx2+m
所以y1-y2=k(x1-x2)
所以AB=√(1+k²)*︱x1-x2︱=√(1+k²)*√[(x1+x2)²- 4x1x2]
因为k1、k、k2成等比数列,所以k²=k1*k2,而k1=y1/x1,k2=y2/x2.所以y1y2/x1x2=k²
将y=kx+m代入椭圆方程,可得x1x2=(4m²-4)/(4k²+1)、x1+x2=8km/(4k²+1)
同理可得y1y2=(m²-4k²)/(4k²+1)、y1+y2=2m/(4k²+1)
所以(m²-4k²)/(4k²+1)* (4k²+1) /(4m²-4),即(m²-4k²)/(4m²-4)=k²,则k²=1/4
S=1/2*AB*(原点到直线的距离)=1/2*AB*|m|/√(1+k²)
将AB=√(1+k²)*√[(x1+x2)²- 4x1x2]代入,则S=1/2*|m|*√[(x1+x2)²- 4x1x2]= 1/2*|m|*4√(k²+1-m²)/(4k²+1) ≥√6/3,所以|m|*√(5/4-m²) ≥√6/3,可得m范围追问3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯