如图,四边形ABCD是等腰梯形,AD∥BC,AB=DC,且BE=CF.
(1)求证:AF=DE.
(2)判断△OAD的形状,并证明你的结论.
如图,四边形ABCD是等腰梯形,AD∥BC,AB=DC,且BE=CF.(1)求证:AF=DE.(2)判断△OAD的形状,并证明你的结论.
答案:2 悬赏:30 手机版
解决时间 2021-04-13 02:17
- 提问者网友:送舟行
- 2021-04-12 08:29
最佳答案
- 五星知识达人网友:酒者煙囻
- 2021-04-12 09:24
解:(1)∵BE=CF∴BF=CE
又∵四边形ABCD是等腰梯形,
∴∠B=∠C且AB=DC,
∴△ABF≌△DCE,
∴AF=DE;
(2)△OAD是等腰三角形
证明:由△ABF≌△DCE知∠AFB=∠DEC,
∴OE=OF且AF=DE,
∴OA=OD,
∴△OAD是等腰三角形.解析分析:(1)本题比较简单,根据题意及等腰梯形的性质即可证明出△ABF≌△DCE,继而可得出结论.
(2)△ABF≌△DCE知∠AFB=∠DEC,从而利用平行线的性质可作出判断.点评:本题考查等腰梯形的性质,难度不大,解答本题的关键是掌握等腰梯形的腰及同一底边上的底角相等.
又∵四边形ABCD是等腰梯形,
∴∠B=∠C且AB=DC,
∴△ABF≌△DCE,
∴AF=DE;
(2)△OAD是等腰三角形
证明:由△ABF≌△DCE知∠AFB=∠DEC,
∴OE=OF且AF=DE,
∴OA=OD,
∴△OAD是等腰三角形.解析分析:(1)本题比较简单,根据题意及等腰梯形的性质即可证明出△ABF≌△DCE,继而可得出结论.
(2)△ABF≌△DCE知∠AFB=∠DEC,从而利用平行线的性质可作出判断.点评:本题考查等腰梯形的性质,难度不大,解答本题的关键是掌握等腰梯形的腰及同一底边上的底角相等.
全部回答
- 1楼网友:深街酒徒
- 2021-04-12 10:37
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯