在三角形ABC中,∠ACB=90°,CD⊥AB于点D,DE⊥AC于点E,DF⊥BC于点F,求证:AC三次方比BC三次方=
答案:1 悬赏:20 手机版
解决时间 2021-08-18 04:42
- 提问者网友:放下
- 2021-08-17 11:51
在三角形ABC中,∠ACB=90°,CD⊥AB于点D,DE⊥AC于点E,DF⊥BC于点F,求证:AC三次方比BC三次方=AE比BF
最佳答案
- 五星知识达人网友:平生事
- 2021-08-17 12:37
证明:
由DE⊥AC于点E,DF⊥BC于点F,得,四边形EDFC 是矩形;
DF=CE,DE=CF
DE⊥AC于点E,得DE//BC
三角形AED 与三角形ACB 相似
AE:DE=AC:BC (1)式
DF⊥BC于点F,得DF//AC
三角形BFDD与三角形BCA 相似
BF:BC=DF:AC (2)式
DF=CE=AC-AE
DE=CF=BC-BF
代入(1),(2) 整理,得 :
AC三次方比BC三次方=AE比BF
再问: 代入(1),(2) 整理,这点不懂,怎么代入,代入哪个?
再答: 证明: 由DE⊥AC于点E,DF⊥BC于点F,得,四边形EDFC 是矩形; DF=CE,DE=CF DE⊥AC于点E,得DE//BC 三角形AED 与三角形ACB 相似 AE:DE=AC:BC (1)式 DF⊥BC于点F,得DF//AC 三角形BFDD与三角形BCA 相似 BF:BC=DF:AC (2)式 由(2) 得 DF:BF=AC:BC (3) (1)x (3) AE/DE XDF/BF =(AC/BC)^2 (4) 三角形CFD与三角形ABC 相似 DF:CF= BC:AC (5) 又CF=DE 所以DF:DE= BC:AC (6) 将(6)代入(4) AE/BF= (AC/BC)^3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯