证明1+1/根号2^3+1/根号3^3+.+1/根号n^3<3
证明1+1/根号2^3+1/根号3^3+.+1/根号n^3
答案:1 悬赏:0 手机版
解决时间 2021-04-13 05:19
- 提问者网友:像風在裏
- 2021-04-12 21:24
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-04-12 23:03
只需证明1+1/根号2^3+1/根号3^3+.+1/根号k^3≤3-2/根号k
用数学归纳法:k=1时,左=1,右=1,成立,
设k=n时原不等式成立,则k=n+1时,左=1+1/根号2^3+1/根号3^3+.+1/根号n^3+1/根号(n+1)^3
≤3-2/根号n+1/根号(n+1)^3
下证-2/根号n+1/根号(n+1)^3≤-2/根号(n+1)
而2/根号n-2/根号(n+1)=2[根号(n+1)-根号n]/根号n(n+1)=2/[根号(n+1)+根号n]根号n(n+1)
≤2/2根号(n+1)^3=1/根号(n+1)^3
所以n=k+1时,左=1+1/根号2^3+1/根号3^3+.+1/根号n^3+1/根号(n+1)^3
≤3-2/根号n+1/根号(n+1)^3≤3-2/根号(n+1),所以k=n+1时成立
综上,有1+1/根号2^3+1/根号3^3+.+1/根号k^3≤3-2/根号k
而3-2/根号k
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯