如果实数a、b、c满足a+2b+3c=12,且a2+b2+c2=ab+ac+bc,则代数值a+b2+c3的值为______
答案:1 悬赏:70 手机版
解决时间 2021-03-21 00:13
- 提问者网友:孤凫
- 2021-03-20 04:23
如果实数a、b、c满足a+2b+3c=12,且a2+b2+c2=ab+ac+bc,则代数值a+b2+c3的值为______
最佳答案
- 五星知识达人网友:玩世
- 2021-03-20 05:39
∵a2+b2+c2=ab+ac+bc,
?2a2+2b2+2c2=2ab+2ac+2bc,
?(a2-2ab+b2)+(a-2ac+c2)+(b2-2bc+c2)=0,
?(a-b)2+(a-c)2+(b-c)2=0,
∴a-b=0、a-c=0、b-c=0,即a=b=c,
又∵a+2b+3c=12,
∴a=b=c=2,
∴a+b2+c3=2+4+8=14.
故答案为:14.
?2a2+2b2+2c2=2ab+2ac+2bc,
?(a2-2ab+b2)+(a-2ac+c2)+(b2-2bc+c2)=0,
?(a-b)2+(a-c)2+(b-c)2=0,
∴a-b=0、a-c=0、b-c=0,即a=b=c,
又∵a+2b+3c=12,
∴a=b=c=2,
∴a+b2+c3=2+4+8=14.
故答案为:14.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯