永发信息网

已知函数y=f(x)满足f(-x)=f(x),

答案:3  悬赏:0  手机版
解决时间 2021-02-22 04:54
已知函数y=f(x)满足f(-x)=f(x),它在区间(0,+∞)上是增函数,且f(x)<0,试问F(x)=1/f(x)在区间(0,+∞)上增还是减 ,请证明你的结论。
最佳答案
证明:设x1,x2∈(0,+∞),且x1 则F(x1)-F(x2)=1/f(x1)-1/f(x2)
=[f(x2)-f(x1)]/[f(x1)f(x2)],

∵f(x)在区间(0,+∞)上为增函数,且x1 ∴f(x1)0,
又在区间(0,+∞)上,f(x)<0,且x1,x2∈(0,+∞),
∴f(x1)<0,f(x2)<0,
∴[f(x2)-f(x1)]/[f(x1)f(x2)]>0,
即F(x1)-F(x2) >0,
∴F(x1)>F(x2),
由增减函数的定义可知,F(x)在区间(0,+∞)上为减函数.
证毕

若问题是:试问F(x)在区间(-∞,0)上增还是减,请证明你的结论.

证明:设x1,x2∈(-∞,0),且x1 则F(x1)-F(x2)=1/f(x1)-1/f(x2)
=[f(x2)-f(x1)]/[f(x1)f(x2)],

∵x1 ∴-x1>-x2>0,
又∵f(x)在区间(0,+∞)上为增函数,且-x1>-x2>0,
∴f(-x1)>f(-x2),
∵f(-x)=f(x),
∴f(x1)>f(x2),即f(x1)-f(x2)>0,f(x2)-f(x1)<0,
又在区间(0,+∞)上,f(x)<0,且-x1,-x2∈(0,+∞),
∴f(-x1)<0,f (-x2)<0,
由f(-x)=f(x),得f(x1)<0,f (x2)<0,
∴[f(x2)-f(x1)]/[f(x1)f(x2)]<0,
即F(x1)-F(x2)<0,
∴F(x1) 由增减函数的定义可知,F(x)在区间(-∞,0)上为增函数.
证毕
全部回答
是减涵数。由于y=1/f(x)是复合函数,不妨令t=f(x).则y=1/t在(0,+无穷)是递减的,又因为f(x)在(0,+无穷)是单调递增所以y是递减,也就是减函数!不过这题出错了。f(x)不可能小于零
由已知可得 f(x+y)-f(x)=f(y)-2 设x,y属于r,且x>0 则由上述可得x+y>y f(x+y)-f(y)=f(x)-2 又因当x>0,f(x)>2,f(x)-2>0 所以f(x+y)-f(y)>0 f(x+y)>f(y) 故而,对于x1,x2属于r,如果x1>x2,则f(x1)>f(x2) 即f(x)为单增函数 已知f(3)=5,f(3+0)+2=f(3)+f(0), 因此f(0)=2,同理 f(2)+f(1)=f(3)+2 2f(1)=f(2)+2 f(1)=3,f(2)=4, f(2a^2+1)+f(5-3a)=f(2a^2+1+5-3a)+2>9 f(2a^2-3a+1+2+3)=f(2a^2-3a+1)+f(2)+f(3)-4>7 f(2a^2-3a+1)>2=f(0) 2a^2-3a+1>0 a<0.5或a>2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
丹顶鹤的主要栖息地?
以下关于贪污罪和职务侵占罪的说法有误的是()
芦荟部分烂根怎么办
人口和计划生育局家属院地址在哪,我要去那里
海尔摄像机怎么把默认存储位置设置为存储到内
那里可以报名函授本科的地理信息科学
上海华夏典当行有几家
江西利德菲生物药业有限公司在什么地方啊,我
求日语大触啊啊啊!! 有没有和火影里面的斑
【实收资本】下列关于实收资本的表述中不正确
乳头发炎溃烂用什么药治好??
向宏电器城我想知道这个在什么地方
苹果5s老是出现我的运营商对我的什么短信收费
台州动车站在哪里
后杏山地址在哪,我要去那里办事
推荐资讯
已知374的x次方=1000,0.374的y次方=1000,求
谷仙快餐这个地址在什么地方,我要处理点事
苹果最牛逼最好用最吊的苹果助手是什么
婚庆用酒什么牌子好呢?
用高中政治必修二 政治生活 知识点来写最近时
一个两位数的十位数字比个位数字的2倍少3,把
下列关于胚胎分割技术的叙述正确的是A. 胚胎
cpu怎么升级啊?玩英雄联盟卡
陈昊然 贾伟 孟国栋都多大啊???
罗丈村我想知道这个在什么地方
结婚第一年娘家送灯笼,都到婆家里,挂了一个
有谁知道一个因贪污正在监外执行的村官还可以
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?