【夹逼定理】用夹逼定理求极限(1 2到n次方 3的n次方)的n分一次方....
答案:2 悬赏:40 手机版
解决时间 2021-02-13 03:28
- 提问者网友:送舟行
- 2021-02-12 03:58
【夹逼定理】用夹逼定理求极限(1 2到n次方 3的n次方)的n分一次方....
最佳答案
- 五星知识达人网友:長槍戰八方
- 2021-02-12 04:52
【答案】 真心希望能帮助LZ,但请LZ给出完整题目. 追答: 考虑函数y=ln(1+2^x+3^x)/x,用罗比达法则:
∵lim(x-->+∞)ln(1+2^x+3^x)/x
=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)
=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)
=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]
=(ln3)^2/ln3
=ln3
∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3
从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
∵lim(x-->+∞)ln(1+2^x+3^x)/x
=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)
=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)
=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]
=(ln3)^2/ln3
=ln3
∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3
从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
全部回答
- 1楼网友:舊物识亽
- 2021-02-12 05:00
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |