已知函数y=f(x)=x分之x²+2x+a x∈[1,+∞)
答案:4 悬赏:50 手机版
解决时间 2021-02-07 22:03
- 提问者网友:棒棒糖
- 2021-02-07 05:05
1.当a=½时,求函数f(x)的最小值 2.对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围
最佳答案
- 五星知识达人网友:不甚了了
- 2021-02-07 06:06
1、a=1/2时
f(x)=(2x²+4x+1)/2x=x+2+1/2x≥2+2根号1/2
当x=1/2x时取得,即x=±根号1/2<1
但 x∈【1,+∞)
∴由对钩函数的性质
x=1时,f(x)min=7/2
2, f(x)>0恒成立
由x∈[1,+∞)
仅需: x²+2x+a>0即可
由二次函数图像性质
仅需4-4a<0即可
解得:a>1
f(x)=(2x²+4x+1)/2x=x+2+1/2x≥2+2根号1/2
当x=1/2x时取得,即x=±根号1/2<1
但 x∈【1,+∞)
∴由对钩函数的性质
x=1时,f(x)min=7/2
2, f(x)>0恒成立
由x∈[1,+∞)
仅需: x²+2x+a>0即可
由二次函数图像性质
仅需4-4a<0即可
解得:a>1
全部回答
- 1楼网友:廢物販賣機
- 2021-02-07 08:06
1、a=1/2时
f(x)=(2x²+4x+1)/2x=x+1/2x+2
因x∈[1,+∞),所以x+1/2x>=2*根号2/2=根号2
当根号x=1/根号2*根号x, x=根号2/2时,等号成立,f(x)最小值为根号2+2
2.,f(x)=x²+2x+a/x
因x∈[1,+∞)为正数,所以只需分子x²+2x+a/x>0,就能使f(x)>0
f(x),的图像抛物线开口向上,只要△<0,就能保证f(x)>0恒成立
△=4-4a<0 ,a>1
- 2楼网友:渡鹤影
- 2021-02-07 07:48
1、当a=1/2时,f(x)=x+1/2*x+2,对f(x)求导,有:f(x)’=1-1/2x*x>0,得有:x>根号下2/2或者x<-根号下2/2,由于x>=1,则有f(x)单调递增,则f(x)的最小值为f(1)=7/2
2、第一种方法:
由于x>=1,f(x)>0恒成立,故x*x+2*x+a>0,即(x+1)*(x+1)+a-1>0,最小值为当x=1时,有
3+a>0,故a>-3.
第二种方法:对f(x)求导,有:f(x)'=1-a/x*x>0,得x*x>a,
1.当a<=1时,f(x)'>0,函数在x>=1单调递增,最小值为f(1)=3+a>0,有a>-3
2.当a>1时,f(x)在(1,根号下a)下单调递减,在(根号下a,+∞)下单调递增,所以f(x)的最小值为
f(根号下a)=2+2*根号下a>0恒成立。
故a>-3
- 3楼网友:北方的南先生
- 2021-02-07 07:04
(1)令x2>x1>1,则f(x2)-f(x1)=(-x2^2+2x2)-(-x1^2+2x1)=(x2-x1)[2-(x2+x1)]
因为x2>x1>1,所以x2+x1>2,x2-x1>0,
所以f(x2)-f(x1)=(x2-x1)[2-(x2+x1)]<0,即f(x2)<f(x1)
所以f(x)在[1,+∞)上是减函数
(2)因为f(x)在[1,+∞)上是减函数,
所以当x∈[2,5]时,f(x)的最大值为f(2)=0,最小值为f(5)=-15
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯