如图,△ABC为等边三角形,点M是线段BC上的任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM交于点Q.
(1)求证:△BAN≌△ACM;
(2)求∠BQM的大小.
如图,△ABC为等边三角形,点M是线段BC上的任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM交于点Q.(1)求证:△BAN≌△ACM;(2)求∠BQ
答案:2 悬赏:10 手机版
解决时间 2021-01-04 20:46
- 提问者网友:玫瑰园
- 2021-01-04 05:18
最佳答案
- 五星知识达人网友:長槍戰八方
- 2021-01-04 05:56
解:(1)∵△ABC为等边三角形,
∴AB=BC=CA,∠BAC=∠BCA=60°,
∵BM=CN,
∴CM=AN,
又∵∠BAN=∠ACM,
∴△BAN≌△ACM;
(2)∴∠CAM=∠ABN,
∴∠BQM=∠ABN+∠BAQ=∠CAM+∠BAQ=∠BAC=60°.解析分析:(1)根据等边三角形的性质求得∠BAC=∠BCA=60°,再根据等边三角形的边长相等求得CM=AN,最后由SAS证明全等即可;(2)根据全等三角形的性质:对应角相等,求得∠CAM=∠ABN;然后由∠BQM=∠ABN+∠BAQ来找∠BAC与其的关系.点评:本题主要考查了全等三角形的判定与性质.利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.
∴AB=BC=CA,∠BAC=∠BCA=60°,
∵BM=CN,
∴CM=AN,
又∵∠BAN=∠ACM,
∴△BAN≌△ACM;
(2)∴∠CAM=∠ABN,
∴∠BQM=∠ABN+∠BAQ=∠CAM+∠BAQ=∠BAC=60°.解析分析:(1)根据等边三角形的性质求得∠BAC=∠BCA=60°,再根据等边三角形的边长相等求得CM=AN,最后由SAS证明全等即可;(2)根据全等三角形的性质:对应角相等,求得∠CAM=∠ABN;然后由∠BQM=∠ABN+∠BAQ来找∠BAC与其的关系.点评:本题主要考查了全等三角形的判定与性质.利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.
全部回答
- 1楼网友:夜风逐马
- 2021-01-04 06:06
正好我需要
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯