如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.
(1)求证:△ABE≌△ACD;
(2)求证:四边形EFCD是平行四边形.
如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平
答案:2 悬赏:20 手机版
解决时间 2021-01-03 14:23
- 提问者网友:嘚啵嘚啵
- 2021-01-02 20:07
最佳答案
- 五星知识达人网友:一叶十三刺
- 2021-01-02 20:57
证明:(1)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,
即:∠EAB=∠DAC,
∴△ABE≌△ACD(SAS);
(2)证明:∵△ABE≌△ACD,
∴BE=DC,∠EBA=∠DCA,
又∵BF=DC,
∴BE=BF.
∵△ABC是等边三角形,
∴∠DCA=60°,
∴△BEF为等边三角形.
∴∠EFB=60°,EF=BF
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠ABC=∠EFB,
∴EF∥BC,即EF∥DC,
∵EF=BF,BF=DC,
∴EF=DC,
∴四边形EFCD是平行四边形.解析分析:因为△ABE和△ACD中的边是等边三角形△ABC和△ADE一些边,因此很容易证得两组对应边相等,再根据等边三角形中角都为60°,可证得一组对应角相等,从而证得全等;根据平行四边形的判定一组对边平行且相等是平行四边形,根据条件可证EF∥DC,EF=DC.点评:本题考查全等三角形的判定和性质,以及平行四边形的判定定理.
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,
即:∠EAB=∠DAC,
∴△ABE≌△ACD(SAS);
(2)证明:∵△ABE≌△ACD,
∴BE=DC,∠EBA=∠DCA,
又∵BF=DC,
∴BE=BF.
∵△ABC是等边三角形,
∴∠DCA=60°,
∴△BEF为等边三角形.
∴∠EFB=60°,EF=BF
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠ABC=∠EFB,
∴EF∥BC,即EF∥DC,
∵EF=BF,BF=DC,
∴EF=DC,
∴四边形EFCD是平行四边形.解析分析:因为△ABE和△ACD中的边是等边三角形△ABC和△ADE一些边,因此很容易证得两组对应边相等,再根据等边三角形中角都为60°,可证得一组对应角相等,从而证得全等;根据平行四边形的判定一组对边平行且相等是平行四边形,根据条件可证EF∥DC,EF=DC.点评:本题考查全等三角形的判定和性质,以及平行四边形的判定定理.
全部回答
- 1楼网友:酒者煙囻
- 2021-01-02 22:01
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |