直线(1+3m)x+(3-2m)y+8m-12=0(m∈R)与圆x2+y2-2x-6y+1=0的公共点个数是( )A.1B.0或2C.2D.
答案:1 悬赏:30 手机版
解决时间 2021-03-27 05:30
- 提问者网友:人生佛魔见
- 2021-03-26 10:21
直线(1+3m)x+(3-2m)y+8m-12=0(m∈R)与圆x2+y2-2x-6y+1=0的公共点个数是( )A.1B.0或2C.2D.
最佳答案
- 五星知识达人网友:煞尾
- 2021-03-26 11:01
直线(1+3m)x+(3-2m)y+8m-12=0可化为
(3x-2y+8)m+(x+3y-12)=0
令3x-2y+8=0且x+3y-12=0
解得x=0,y=4,
即直线(1+3m)x+(3-2m)y+8m-12=0恒过(0,4)点
将(0,4)点代入圆x2+y2-2x-6y+1=0得
x2+y2-2x-6y+1=-7<0
即该点在圆内,故直线(1+3m)x+(3-2m)y+8m-12=0(m∈R)与圆x2+y2-2x-6y+1=0的公共点个数2个
故选C
(3x-2y+8)m+(x+3y-12)=0
令3x-2y+8=0且x+3y-12=0
解得x=0,y=4,
即直线(1+3m)x+(3-2m)y+8m-12=0恒过(0,4)点
将(0,4)点代入圆x2+y2-2x-6y+1=0得
x2+y2-2x-6y+1=-7<0
即该点在圆内,故直线(1+3m)x+(3-2m)y+8m-12=0(m∈R)与圆x2+y2-2x-6y+1=0的公共点个数2个
故选C
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯