如何证明数的整除中的一个性质
答案:2 悬赏:80 手机版
解决时间 2021-01-11 05:31
- 提问者网友:孤凫
- 2021-01-11 00:58
如何证明数的整除中的一个性质
最佳答案
- 五星知识达人网友:雪起风沙痕
- 2021-01-11 02:04
2^(6k+1)+3^(6k+1)+5^6k+1
=2(2^3)^2k+3(3^3)^2k+(5^3)^2k+1
=2(7+1)^2k+3(28-1)^2k+(126-1)^2k+1
把上式都展开,可知每一项都是最后一个式子不能被7整除,
第一个式子余2,第二个式子余3,第三个式子余1,最后一项为1,
则其和为2+3+1+1=7,即余数之和也能被7整除.
所以,原式对于任何正整数k都能被7整除.
整除是数论的基本问题,也是较难的问题,其解法很灵活,需要花点力气进行探究.
=2(2^3)^2k+3(3^3)^2k+(5^3)^2k+1
=2(7+1)^2k+3(28-1)^2k+(126-1)^2k+1
把上式都展开,可知每一项都是最后一个式子不能被7整除,
第一个式子余2,第二个式子余3,第三个式子余1,最后一项为1,
则其和为2+3+1+1=7,即余数之和也能被7整除.
所以,原式对于任何正整数k都能被7整除.
整除是数论的基本问题,也是较难的问题,其解法很灵活,需要花点力气进行探究.
全部回答
- 1楼网友:怀裏藏嬌
- 2021-01-11 02:38
ragon with serenity a
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯