设f(x)是定义在R上的奇函数,在(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0,则不等式xf(x)<0的解集为( )
A. {x|-2<x<0或x>2}
B. {x|x<-2或0<x<2}
C. {x|x<-2或x>2}
D. {x|-2<x<0或0<x<2}
设f(x)是定义在R上的奇函数,在(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0,则不等式xf(x)<0的解
答案:1 悬赏:20 手机版
解决时间 2021-08-20 07:10
- 提问者网友:你独家记忆
- 2021-08-19 21:20
最佳答案
- 五星知识达人网友:低音帝王
- 2021-08-19 21:38
设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)<0,
∴函数g(x)在区间(-∞,0)上是减函数,
∵f(x)是定义在R上的奇函数,
∴g(x)=xf(x)是R上的偶函数,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(-2)=0,
∴f(2)=0;
即g(2)=0且g(0)=0f(0)=0,
∴xf(x)<0化为g(x)<0,
∵对于偶函数g(x),有g(-x)=g(x)=g(|x|),
故不等式为g(|x|)<g(2),
∵函数g(x)在区间(0,+∞)上是增函数,
∴|x|<2且x≠0,解得-2<x<2且x≠0,
故所求的解集为{x|-2<x<2且x≠0}.
故选D.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯