永发信息网

如何学好二次函数?

答案:1  悬赏:0  手机版
解决时间 2021-04-27 16:25
详细点,谢谢。
最佳答案

多分析多练习,学的主要是方法,我可以给你几道经典习题,上面有讲解,希望能帮到你


1.函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,试求y=f(x)的解析式。
答:函数y=f(x)是定义域为[-6,6]的奇函数。又知y=f(x)在[0,3]上是一次函数,在[3,6]上是二次函数,且当x属于[3,6]时,f(x)小于等于f(5)=3,f(6)=2,
可设 f(x)=a(x-5)^2+3 a<0
f(6)=2
则 a+3=2解得 a=-1
故 f(x)=-(x-5)^2+3=-x^2+10x-22 3<=x<=6
f(3)=-1 f(0)=0
则 0<=x<=3 f(x)=-x/3
函数y=f(x)是定义域为[-6,6]的奇函数
故 -3-6<=x<=-3 f(x)=x^2+10x+22

综合 -6<=x<=-3 f(x)=x^2+10x+22
-3 0<=x<=3 f(x)=-x/3
3<=x<=6 f(x)=-x^2+10x-22
试求y=f(x)的解析式。
2.已知函数f(x)=(x-a)/(x-2),若a属于R,且方程f(x)=-x恰有一根落在区间(-2,-1)内,求a的取值范围.
答:f(x)=-x
(x-a)/(x-2)=-x
x^2-x-a=0
令g(x)=x^2-x-a
1°g(x)与x轴有一个交点
△=1+4a=0=>a=-1/4
x=1/2不属于(-2,-1)
a不等于-1/4
2°g(x)与x轴有两个交点
△>0且g(-1)*g(-2)<0=>a属于(2,6)
所以a属于(2,6)
3.对于函数f(x),若存在X0属于R,使f(X0)=X0成立,则称点(X0,X0)为函数的不动点,若对于任意实数b,函数f(x)=ax*x+bx-b总有两个相异的不动点,求实数a的取值范围.
答:ax^2+bx-b=x
ax^2+(b-1)x-b=0
△=(b-1)^2+4ab=b^2+(4a-2)b+1>0
(4a-2)^2-4<o且a不等于0
所以,a属于(0,1)
3.设f(x)=log1/2(1-ax)/(x-1)为奇函数,a为常数.(1)求a的值;(2)证明f(x)在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x的值,不等式f(x)>(1/2)x+m恒成立,求实数m的取值范围.(不等式应为二分之一的x次方,不会打)
答:f(x)=-f(-x)
log1/2[(1-ax)/(x-1)]=-log1/2[(1+ax)/(-x-1)]
a=±1
因为真数大于零
所以,a=-1


【例1】求下列函数的增区间与减区间
(1)y=|x2+2x-3|

解 (1)令f(x)=x2+2x-3=(x+1)2-4.
先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.
由图像易得:
递增区间是[-3,-1],[1,+∞)
递减区间是(-∞,-3],[-1,1]
(2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.
解 当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x.
当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2.
∴增区间是(-∞,0)和(0,1)
减区间是[1,2)和(2,+∞)
(3)解:由-x2-2x+3≥0,得-3≤x≤1.
令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是 在x∈[-1,1]上是 .

∴函数y的增区间是[-3,-1],减区间是[-1,1].

【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范围.
解 当a=0时,f(x)=x在区间[1,+∞)上是增函数.

若a<0时,无解.
∴a的取值范围是0≤a≤1.
【例3】已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:
(1)f(6)与f(4)

解 (1)∵y=f(x)的图像开口向下,且对称轴是x=3,∴x≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)

时为减函数.


解 任取两个值x1、x2∈(-1,1),且x1<x2.

当a>0时,f(x)在(-1,1)上是减函数.
当a<0时,f(x)在(-1,1)上是增函数.
【例5】利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.
证 取任意两个值x1,x2∈(-∞,+∞)且x1<x2.

又∵x1-x2<0,∴f(x2)<f(x1)
故f(x)在(-∞,+∞)上是减函数.

得f(x)在(-∞,+∞)上是减函数.



解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.

∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)
∴f(x)在(0,1],[-1,0)上为减函数.
当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.
根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致



【例1】判断下列各式,哪个能确定y是x的函数?为什么?
(1)x2+y=1
(2)x+y2=1

解 (1)由x2+y=1得y=1-x2,它能确定y是x的函数.

于任意的x∈{x|x≤1},其函数值不是唯一的.

【例2】下列各组式是否表示同一个函数,为什么?


解 (1)中两式的定义域部是R,对应法则相同,故两式为相同函数.
(2)、(3)中两式子的定义域不同,故两式表示的是不同函数.
(4)中两式的定义域都是-1≤x≤1,对应法则也相同,故两式子是相同函数.
【例3】求下列函数的定义域:




【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域:




求实数a的取值范围.

为所求a的取值范围.
【例6】求下列函数的值域:
(1)y=-5x2+1

(3)y=x2-5x+6,x∈[-1,1)
(4)y=x2-5x+6,x∈[-1,3]


(9)y=|x-2|-|x+1|
解 (1)∵x∈R,∴-5x2+1≤1,值域y≤1.





(6)定义域为R

(7)解:定义域x≠1且x≠2

(y-4)x2-3(y-4)x+(2y-5)=0 ①
当y-4≠0时,∵方程①有实根,∴Δ≥0,
即9(y-4)2-4(y-4)(2y-5)≥0
化简得y2-20y+64≥0,得
y<4或y≥16
当y=4时,①式不成立.
故值域为y<4或y≥16.


函数y在t≥0时为增函数(见图2.2-3).



(9)解:去掉绝对值符号,

其图像如图2.2-4所示.

由图2.2-4可得值域y∈[-3,3].
说明 求函数值域的方法:
1°观察法:常利用非负数:平方数、算术根、绝对值等.(如例1,2)
2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给定区间[m,n]的值域(或最值),分三种情况考虑:




(如例5)可做公式用.

法求y的范围(如例6-7).

为二次函数求值域.但要注意中间量t的范围(如例6-8).
6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量的范围,求函数y的值域(如例6-6).
7°图像法(如例6-9):
由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根据函数解析式的不同特点灵活用各种方法求解.


解 (2)∵f(-7)=10,∴f[f(-7)]=f(10)=100.
说明 本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段函数值时,要注意在定义域内进行.
【例8】根据已知条件,求函数表达式.
(1)已知f(x)=3x2-1,求①f(x-1),②f(x2).
(2)已知f(x)=3x2+1,g(x)=2x-1,求f[g(x)].

求f(x).
(4)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).
(5)设周长为a(a>0)的等腰三角形,其腰长为x,底边长为y,试将y表示为x的函数,并求它的定义域和值域.
(1)分析:本题相当于x=x-1时的函数值,用代入法可求得函数表达式.
解 ∵f(x)=3x2-1
∴f(x-1)=3(x-1)2-1=3x2-6x+2
f(x2)=3(x2)2-1=3x4-1
(2)分析:函数f[g(x)]表示将函数f(x)中的x用g(x)来代替而得到的解析式,∴仍用代入法求解.
解 由已知得f[g(x)]=3(2x-1)2+1=12x2-12x+4

法(或观察法).


∴x=(t+1)2代入原式有f(t)=(t+1)2-6(t+1)-7
=t2-4t-12 (t≥-1)
即f(x)=x2-4x-12 (x≥-1)
说明 解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.
(4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解.
解 设f(x)=ax2+bx+c(a≠0)
由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,得恒等式2ax+

说明 待定系数是重要的数学方法,应熟练掌握.
(5)解:∵2x+y=a,∴y=a-2x为所求函数式.
∵三角形任意两边之和大于第三边,
∴得2x+2x>a,又∵y>0,

我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
怎样做觉醒?
兄弟最好有几个
visit系统天神挂怎么用
诺基亚7230如何设置在下载时手动选择存储路径
梦英雄大会我109J积分有70为什么领不到明日之
纱线上之所以出现强力弱环是为什么?
这钱和谁要?
金木水火土谁的腿最长?并说原因!
夏普这个牌怎麽样
nokia2360破解密码
怎么能把寄售点换成通用点?
独特蒙古包厂地址有知道的么?有点事想过去
有关诚实美的句子,以发现美为话题的名言
临安山核桃在哪里买放心
用什么可以把网速搞快
推荐资讯
是关于水浒Q传送红豆急急急!!!高手来
斤字旁的字有哪些
左转摩托车和直行摩托车相撞
求魔导师三修加点
一到冬季,我的手脚就冰凉冰凉的,睡一晚脚都
H1Z1中文名叫什么?
到哪里才能找到更好的情侣头像呢
十六应该带有钢丝的胸罩还是没钢丝的胸罩呢
《浅唱》的空间歌曲链接地址急需
蔚蓝海岸怎么样,住在深圳南山蔚蓝海岸的朋友
有没有适合初中生演的小品?
单因素方差分析结果,spss单因素方差分析结果
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?