利用定积分定义计算e的x次方在0到1上(必须用定义··)知道的速度帮下忙谢谢了!!!!
答案:1 悬赏:80 手机版
解决时间 2021-12-02 12:10
- 提问者网友:沉默菋噵
- 2021-12-01 13:49
利用定积分定义计算e的x次方在0到1上(必须用定义··)知道的速度帮下忙谢谢了!!!!
最佳答案
- 五星知识达人网友:玩家
- 2021-12-01 14:52
( λ->0)lim∑e^(ξi)(△xi)
=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】
=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}
=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}
=(n->∞)lim[1-e]/{n[1-e^(1/n)]}
=e-1
其中:(n->∞)lime^(1/n)=1,(n->∞)limn[1-e^(1/n)]=(x->0+)lim[1-e^x]/x=(x->0+)lim(-x/x)=-1 ,在求∑e^(i/n)时用到了等比数列求和公式。
=(n->∞)lim∑e^(i/n)(1/n)【其中ξi=i/n,△xi=1/n,i=1,2,...,n】
=(n->∞)lim(1/n){e^(1/n)[1-(e^(1/n))^n]/[1-e^(1/n)]}
=(n->∞)lime^(1/n)[1-e]/{n[1-e^(1/n)]}
=(n->∞)lim[1-e]/{n[1-e^(1/n)]}
=e-1
其中:(n->∞)lime^(1/n)=1,(n->∞)limn[1-e^(1/n)]=(x->0+)lim[1-e^x]/x=(x->0+)lim(-x/x)=-1 ,在求∑e^(i/n)时用到了等比数列求和公式。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯