设F1、F2分别是椭圆E:X^2+Y^2/b^2=1(0<b<1)的左右焦点,过F1的直线L与E相
答案:1 悬赏:0 手机版
解决时间 2021-01-13 16:50
- 提问者网友:玫瑰园
- 2021-01-12 18:07
设F1、F2分别是椭圆E:X^2+Y^2/b^2=1(0<b<1)的左右焦点,过F1的直线L与E相
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-01-12 19:24
解:椭圆x²+y²/b²=1
a=1,AF1+AF2=2,BF1+BF2=2
AB=AF1+BF2
根据题意
2AB=AF2+BF2
3AB=AF1+AF2+BF1+BF2
3AB=4
AB=4/3
设过点F1(-c,0)的直线为y=x+c
代入椭圆b²x²+y²=b²
b²x²+x²+2cx+c²=b²
(b²+1)x²+2cx+c²-b²=0
x1+x2=-2c/(b²+1)
x1*x2=(c²-b²)/(b²+1)
AB=4/3
16/9=(1+1)[(x1+x2)²-4x1x2]
8/9=4c²/(b²+1)²-4(c²-b²)/(b²+1)
c²=a²-b²=1-b²
所以4(1-b²)/(b²+1)²-4(1-2b²)/(b²+1)=8/9
b^4=1/9(b²+1)²
b²=1/3(b²+1)
3b²=b²+1
b²=1/2
b=√2/2
所以b=√2/2
a=1,AF1+AF2=2,BF1+BF2=2
AB=AF1+BF2
根据题意
2AB=AF2+BF2
3AB=AF1+AF2+BF1+BF2
3AB=4
AB=4/3
设过点F1(-c,0)的直线为y=x+c
代入椭圆b²x²+y²=b²
b²x²+x²+2cx+c²=b²
(b²+1)x²+2cx+c²-b²=0
x1+x2=-2c/(b²+1)
x1*x2=(c²-b²)/(b²+1)
AB=4/3
16/9=(1+1)[(x1+x2)²-4x1x2]
8/9=4c²/(b²+1)²-4(c²-b²)/(b²+1)
c²=a²-b²=1-b²
所以4(1-b²)/(b²+1)²-4(1-2b²)/(b²+1)=8/9
b^4=1/9(b²+1)²
b²=1/3(b²+1)
3b²=b²+1
b²=1/2
b=√2/2
所以b=√2/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯