求球面x^2+y^2+z^2=9与x+y=1的交线在xoy面上的投影方程
求球面x^2+y^2+z^2=9与x+y=1的交线在xoy面上的投影方程
答案:1 悬赏:20 手机版
解决时间 2021-05-05 17:04
- 提问者网友:富士山上尢
- 2021-05-04 18:41
最佳答案
- 五星知识达人网友:何以畏孤独
- 2021-05-04 20:04
他们的交线是个圆,这个圆所在平面与Z轴平行
在xoy面上的投影应该是方程:线段x+y=1,z=0
现在来算算其中x,y的取值范围.
球心在原点,球半径=3
原点到那个圆所在平面的距离,也就是原点到那条线段的距离,就是:(根号2)/2
所以,那个圆的半径=[3^2 -((根号2)/2)^2]^(1/2)=(根号34)/2
所以,它的直径=根号34
这也就是投影得到的那条线段的长度.
由此可以得出投影方程的x,y的取值范围:
-{[(根号34)-(根号2)]/2}*(根号2)/2 < x < 1 + {[(根号34)-(根号2)]/2}*(根号2)/2
也就是:-[(根号17)- 1]/2 < x < 1 + [(根号17)- 1]/2
同样:-[(根号17)- 1]/2 < y < 1 + [(根号17)- 1]/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯