21、如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线)于G,H点,如图(2)
file:///C:/Documents%20and%20Settings/Administrator/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/678RSBCV/744cba6c%5B1%5D.png
(1)问:始终与△AGC相似的三角形有 及 ;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
21、如图(1),△ABC与△EFD为等腰直角三角形
答案:6 悬赏:0 手机版
解决时间 2021-04-06 08:50
- 提问者网友:你给我的爱
- 2021-04-05 18:19
最佳答案
- 五星知识达人网友:煞尾
- 2021-04-05 18:45
解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,
∴始终与△AGC相似的三角形有△HAB和△HGA;
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=81/x,(0<x< 9√2)
(3)∵∠GAH=45°,分两种情况讨论:
①当∠GCH=45°时,GA=GH,△AGH是等腰三角形,如图(1)可知GH=CG=x= 9√2/2
②当AG=AH时,△AGH是等腰三角形,如图(2)可知
∠AGC=∠AHG=∠C+∠CAH=∠HAG+∠CAH=∠CAG,∴x=CG=CA=9.
③当∠HGA=45°,CA=CG,△AGH是等腰三角形,x=CG=CB=9√2.
∴始终与△AGC相似的三角形有△HAB和△HGA;
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=81/x,(0<x< 9√2)
(3)∵∠GAH=45°,分两种情况讨论:
①当∠GCH=45°时,GA=GH,△AGH是等腰三角形,如图(1)可知GH=CG=x= 9√2/2
②当AG=AH时,△AGH是等腰三角形,如图(2)可知
∠AGC=∠AHG=∠C+∠CAH=∠HAG+∠CAH=∠CAG,∴x=CG=CA=9.
③当∠HGA=45°,CA=CG,△AGH是等腰三角形,x=CG=CB=9√2.
全部回答
- 1楼网友:从此江山别
- 2021-04-05 23:35
【解】(1)△HGA及△HAB;
(2)由(1)可知△AGC∽△HAB
∴ ,即 ,
所以,
(3)当CG< 时,∠GAC=∠H<∠HAC,∴AC<CH
∵AG<AC,∴AG<GH
又AH>AG,AH>GH
此时,△AGH不可能是等腰三角形;
当CG= 时,G为BC的中点,H与C重合,△AGH是等腰三角形;
此时,GC= ,即x=
当CG> 时,由(1)可知△AGC∽△HGA
所以,若△AGH必是等腰三角形,只可能存在AG=AH
若AG=AH,则AC=CG,此时x=9
- 2楼网友:风格不统一
- 2021-04-05 22:53
【解】(1)△HGA及△HAB;
(2)由(1)可知△AGC∽△HAB
∴ ,即 ,
所以,
(3)当CG< 时,∠GAC=∠H<∠HAC,∴AC<CH
∵AG<AC,∴AG<GH
又AH>AG,AH>GH
此时,△AGH不可能是等腰三角形;
当CG= 时,G为BC的中点,H与C重合,△AGH是等腰三角形;
此时,GC= ,即x=
当CG> 时,由(1)可知△AGC∽△HGA
所以,若△AGH必是等腰三角形,只可能存在AG=AH
若AG=AH,则AC=CG,此时x=9
综上,当x=9或 时,△AGH是等腰三角形
- 3楼网友:荒野風
- 2021-04-05 21:51
(1)∵△abc与△efd为等腰直角三角形,ac与de重合,
∵∠h+∠hac=45°,∠hac+∠cag=45°,
∴∠h=∠cag,
∵∠acg=∠b=45°,
∴△agc∽△hab,
∴同理可得出:△agc∽△hga,
∴始终与△agc相似的三角形有△hab和△hga;
故答案为:△hab和△hga.
(2)∵△agc∽△hab,
∴ac:hb=gc:ab,即9:y=x:9,
∴y=
81x
,
∵ab=ac=9,∠bac=90°,
∴bc=
ab2+ac2
=
92+92
=9
2
.
答:y关于x的函数关系式为y=
81x
(0<x<9
2
);
(3)①当cg<
12
bc时,∠gac=∠h<∠hac,
∴ac<ch,
∵ag<ac,
∴ag<ch<gh,
又∵ah>ag,ah>gh,
此时,△agh不可能是等腰三角形,
②当cg=
12
bc时,g为bc的中点,h与c重合,△agh是等腰三角形,
此时,gc=
922
,即x=
922
,
③当cg>
12
bc时,由(1)△agc∽△hga,
∴,若△agh必是等腰三角形,只可能存在gh=ah,若gh=ah,则ac=cg,此时x=9,
如图3,当cg=bc时,
注意:df才旋转到与bc垂直的位置,
此时b,e,g重合,∠agh=∠gah=45°,
∴△agh为等腰三角形,所以cg=9
2
.
综上所述,当x=9或x=
922
或9
2
时,△agh是等腰三角形.
- 4楼网友:青灯有味
- 2021-04-05 20:51
(1)、△HAB △HGA;
(2)、由△AGC∽△HAB,得AC/HB=GC/AB,即9/y=x/9,故y=81/x (0
- 5楼网友:你哪知我潦倒为你
- 2021-04-05 20:09
解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,
∵∠HAG=∠B=45°,∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∴△HAB∽△HGA,
∴始终与△AGC相似的三角形有△HAB和△HGA;
故答案为:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=81:x(0<x≤9+922),
答:y关于x的函数关系式为y=81:x(0<x≤9+922).
(3)∵∠GAH=45°,分两种情况讨论:
①当∠GAH=45°是等腰三角形的底角时,如图(1):
∵AC=9,在等腰直角三角形ACG中,CG=AG,根据勾股定理得:AC2=CG2+AG2,
∴CG=AG=922;
当∠GAH=45°是等腰三角形的底角时,如下图:
此时点B,点G与点E重合,
∵AB=AC=9,在等腰直角三角形ACG中,CG=BC,根据勾股定理得:CG2=AB2+AC2,
∴CG=92;
②当∠GAH=45°是等腰三角形的顶角时如图(2):由△HGA∽△HAB,
∵AG=AH,
∴∠AHG=∠AGH=12(180°-45°)=67.5°,
∴∠BAH=180°-∠B-∠AHB=67.5°=∠AHG,
∴HB=AB=9,
同理AC=CG,
∴BG=HC,
可得:CG=x=9.
答:当x为922、92或9时,△AGH是等腰三角形.
不是百度里的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯