曲面积分 设∑是柱面x^2+y^2=a^2在0<z<h之间的部分,则∫∫x^2ds=?为什么此题
答案:1 悬赏:50 手机版
解决时间 2021-02-03 04:24
- 提问者网友:孤凫
- 2021-02-02 18:22
曲面积分 设∑是柱面x^2+y^2=a^2在0<z<h之间的部分,则∫∫x^2ds=?为什么此题可以用轮换对称性?
最佳答案
- 五星知识达人网友:洎扰庸人
- 2021-02-02 19:30
因为积分曲面上满足f(x,y)=x^2+y^2=f(y,x)=y^2+x^2=a^2
所以∫∫x^2dS=∫∫y^2dS
那么原积分=(1/2)∫∫(x^2+y^2)dS=(a^2/2)∫∫dS=(a^2/2)(2πah)=πa^3h
所以∫∫x^2dS=∫∫y^2dS
那么原积分=(1/2)∫∫(x^2+y^2)dS=(a^2/2)∫∫dS=(a^2/2)(2πah)=πa^3h
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯