如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?A.∠1<
答案:5 悬赏:0 手机版
解决时间 2021-02-18 03:34
- 提问者网友:斑駁影
- 2021-02-17 05:52
如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?A.∠1<∠2B.∠1>∠2C.∠3<∠4D.∠3>∠4
最佳答案
- 五星知识达人网友:一袍清酒付
- 2020-10-16 23:10
D解析分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:∵四边形ABCD、AEFG均为正方形,
∴∠BAD=∠EAG=90°,
∵∠BAD=∠1+∠DAE=90°,
∠EAG=∠2+∠DAE=90°,
∴∠1=∠2,
在Rt△ABE中,AE>AB,
∵四边形AEFG是正方形,
∴AE=AG,
∴AG>AB,
∴∠3>∠4.
故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.
∴∠BAD=∠EAG=90°,
∵∠BAD=∠1+∠DAE=90°,
∠EAG=∠2+∠DAE=90°,
∴∠1=∠2,
在Rt△ABE中,AE>AB,
∵四边形AEFG是正方形,
∴AE=AG,
∴AG>AB,
∴∠3>∠4.
故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.
全部回答
- 1楼网友:不如潦草
- 2019-07-05 02:36
有他们的电话么?先问下情况
- 2楼网友:一秋
- 2019-04-27 13:13
我也是这个答案
- 3楼网友:西岸风
- 2020-12-31 22:05
楼主你知道的太多了
- 4楼网友:北城痞子
- 2019-03-08 16:28
我查了下,艾里思顿瓷砖的地址是在河南省平顶山市新华区胜利路
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯