北师大版五年级上册数学课本答案
答案:3 悬赏:0 手机版
解决时间 2021-02-15 06:21
- 提问者网友:别再叽里呱啦
- 2021-02-14 05:56
还要评价的答案,也是北师大版五年级上册74页以后。数学课本的是85-86的。希望帮帮忙,谢谢!
最佳答案
- 五星知识达人网友:傲气稳了全场
- 2021-02-14 06:45
我也不知道啊啊 ,你把问题打出来了,我就一定知道
全部回答
- 1楼网友:一叶十三刺
- 2021-02-14 08:15
北师大版初中数学定理知识点汇总八年级(上册) 第一章 勾股定理 ※直角三角形两直角边的平和等于斜边的平方。即: (由直角三角形得到边的关系) 如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角形。 满足条件 的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(6,8,10);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数) 第二章 实数 ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。 ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。 ※正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。 ※正数的立方根是正数;0的立方根是0;负数的立方根是负数。 第三章 图形的平移与旋转 平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。 平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。 旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。 这个定点叫旋转中心,转动的角度叫旋转角。 旋转的性质:旋转后的图形与原图形的大小和形状相同; 旋转前后两个图形的对应点到旋转中心的距离相等; 对应点到旋转中心的连线所成的角度彼此相等。 (例:如图所示,点d、e、f分别为点a、b、c的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。) 第四章 四平边形性质探索 ※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。 菱形的定义:一组邻边相等的平行四边形叫做菱形。 ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 ※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。 ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定: 有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。 ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。 ※多边形内角和:n边形的内角和等于(n-2)·180° ※多边形的外角和都等于360° ※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。 ※中心对称图形上的每一对对应点所连成的线段被对称中心平分。 第五章 位置的确定 ※平面直角坐标系概念:在平面内,两条互相垂直且有公
- 2楼网友:空山清雨
- 2021-02-14 06:58
你把问题打出来了,我就一定知道
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯