如图,在平行四边形ABcD中,对角线Ac的平行线MN分别交DA、Dc的延长线点M、N交边AB、Bc
答案:2 悬赏:20 手机版
解决时间 2021-03-21 01:30
- 提问者网友:我们很暧昧
- 2021-03-20 18:29
如图,在平行四边形ABcD中,对角线Ac的平行线MN分别交DA、Dc的延长线点M、N交边AB、Bc于点P、Q求证PM=NQ
最佳答案
- 五星知识达人网友:一把行者刀
- 2021-03-20 19:54
(1)图中平行四边形有3个:平行四边形ABCD、平行四边形AMQC、平行四边形APNC
①四边形ABCD是平行四边形是已知
②四边形APNC是平行四边形的理由:
∵AC‖MN AB‖CD
∴ ∠MPA=∠PAC ∠MPA=∠N
∴∠PAC=∠N
∵AB‖CD
∴ ∠PAC+∠ACN=180度 ∠N+∠APN=180度
∴∠ACN=∠APN
∴四边形APNC是平行四边形(两组对角分别相等的四边形是平行四边形)
③四边形AMQC是平行四边形的理由:
∵AC‖MN AD‖BC
∴ ∠M=∠DAC ∠DAC=∠ACQ
∴∠M=∠ACQ
∵AC‖MN
∴ ∠M+∠MAC=180度 ∠MQC+∠ACQ=180度
∴∠MAC=∠MQC
∴四边形AMQC是平行四边形(两组对角分别相等的四边形是平行四边形)
(2)MP=QN
理由:∵AD‖BC AB‖CD
∴ ∠M=∠CQN ∠APM=∠N
又∵四边形APNC是平行四边形
∴AP=CN
∴△APM≌△CNQ(AAS)
∴MP=QN
①四边形ABCD是平行四边形是已知
②四边形APNC是平行四边形的理由:
∵AC‖MN AB‖CD
∴ ∠MPA=∠PAC ∠MPA=∠N
∴∠PAC=∠N
∵AB‖CD
∴ ∠PAC+∠ACN=180度 ∠N+∠APN=180度
∴∠ACN=∠APN
∴四边形APNC是平行四边形(两组对角分别相等的四边形是平行四边形)
③四边形AMQC是平行四边形的理由:
∵AC‖MN AD‖BC
∴ ∠M=∠DAC ∠DAC=∠ACQ
∴∠M=∠ACQ
∵AC‖MN
∴ ∠M+∠MAC=180度 ∠MQC+∠ACQ=180度
∴∠MAC=∠MQC
∴四边形AMQC是平行四边形(两组对角分别相等的四边形是平行四边形)
(2)MP=QN
理由:∵AD‖BC AB‖CD
∴ ∠M=∠CQN ∠APM=∠N
又∵四边形APNC是平行四边形
∴AP=CN
∴△APM≌△CNQ(AAS)
∴MP=QN
全部回答
- 1楼网友:行路难
- 2021-03-20 20:41
显然qm与np有一段公共边pq 这样转化到只需求证mp=nq就可以
有平行四边形和有ac平行于mn可以得到四边形macq 和apnc均为平行四边形(两组对边分别平行)有ma=cq pa=cn而角mab=角abc=角ncb (平行内错角等)
由sas可有三角形map全等于三角形qcn
返回题头得证。
楼主自行组织一下数学语言哦。‘
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯