如图,在△ABC中,AD、BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.
答案:2 悬赏:0 手机版
解决时间 2021-12-02 23:31
- 提问者网友:鐵馬踏冰河
- 2021-12-02 17:39
如图,在△ABC中,AD、BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-01-17 21:17
证明:∠EBC=∠EAC(同孤所对圆周角相等).(2分)
∵AD、BD分别平分∠BAC和∠ABC,
∴∠BAE=∠EAC,∠DBC=∠ABD,(1分)
∴∠EBC=∠BAE,(1分)
∴∠EBC+∠DBC=∠BAE+∠ABD.
又∵∠EBC+∠DBC=∠BED(如图),
∠BAE+∠ABD=∠BDE(三角形外角的性质),(1分)
∴∠EBD=∠BDE,(2分)
∴BE=DE(等角对等边).(1分)解析分析:由圆周角定理可得出∠BAE=∠EAC,∠DBC=∠ABD即∠EBC=∠BAE,再根据三角形外角的性质可得出∠BAE+∠ABD=∠BDE,由等边对等角即可得出
∵AD、BD分别平分∠BAC和∠ABC,
∴∠BAE=∠EAC,∠DBC=∠ABD,(1分)
∴∠EBC=∠BAE,(1分)
∴∠EBC+∠DBC=∠BAE+∠ABD.
又∵∠EBC+∠DBC=∠BED(如图),
∠BAE+∠ABD=∠BDE(三角形外角的性质),(1分)
∴∠EBD=∠BDE,(2分)
∴BE=DE(等角对等边).(1分)解析分析:由圆周角定理可得出∠BAE=∠EAC,∠DBC=∠ABD即∠EBC=∠BAE,再根据三角形外角的性质可得出∠BAE+∠ABD=∠BDE,由等边对等角即可得出
全部回答
- 1楼网友:等灯
- 2020-11-24 11:32
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯