已知函数f(x)在(0,+无穷大)上市是单调增函数,当n属于N*时,f(f(n))=3n,则f(5)的值等于
答案:2 悬赏:10 手机版
解决时间 2021-02-01 01:34
- 提问者网友:温旧梦泪无声
- 2021-01-31 17:16
已知函数f(x)在(0,+无穷大)上市是单调增函数,当n属于N*时,f(f(n))=3n,则f(5)的值等于
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-01-31 18:17
若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3{由条件},进而f(f(3))=f(3)=9,与前式矛盾,故不成立;
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾。
所以只剩f(1)=2。验证之:
f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由单调性,f(4)=7,f(5)=8
若f(1)=3,则f(f(1))=f(3)=3{由条件},进而f(f(3))=f(3)=9,与前式矛盾,故不成立;
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾。
所以只剩f(1)=2。验证之:
f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由单调性,f(4)=7,f(5)=8
全部回答
- 1楼网友:英雄的欲望
- 2021-01-31 19:24
虽然我很聪明,但这么说真的难到我了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯