设函数f(x)=2x∧3+3ax∧2+3bx+8c,在x=1及x=2时取得极值 (1)求a.b的值
答案:2 悬赏:40 手机版
解决时间 2021-02-15 11:15
- 提问者网友:呐年旧曙光
- 2021-02-14 18:50
设函数f(x)=2x∧3+3ax∧2+3bx+8c,在x=1及x=2时取得极值 (1)求a.b的值
最佳答案
- 五星知识达人网友:轮獄道
- 2021-02-14 20:23
f'(x)=6x²+6ax+3b,则f'(1)=0且f'(2)=0,代入,解得a=-3,b=4,则f'(x)=6(x-1)(x-2).f(x)在(-∞,1)上递增,在(1,2)上递减,在(2,+∞)上递增.要满足f(x)【f(x)】的最大值即可.
全部回答
- 1楼网友:未来江山和你
- 2021-02-14 21:44
谢谢解答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯