已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2)给出以下四个命题:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)
答案:2 悬赏:0 手机版
解决时间 2021-12-20 23:17
- 提问者网友:伴风望海
- 2021-12-20 11:06
已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2)给出以下四个命题:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)的图象关于原点对称,其中正确的命题序号有________.
最佳答案
- 五星知识达人网友:归鹤鸣
- 2021-12-20 12:37
解:F(0)=f(-4)+f(4),无法算出结果,故无法判断F(0)=0是否成立,(1)不正确;
∵F′(x)=2xf′(x2-4)-2xf′(4-x2),∴F′(2)=4f′(0)-4f′(0)=0,F′(-2)=-4f′(0)+4f′(0)=0,
故(2)正确;
F′(0)=0?f′(-4)-0?f′(4)=0,故(3)正确;
∵F′(-x)=-2xf′(x2-4)+2xf′(4-x2)=-[2xf′(x2-4)-2xf′(4-x2)]=-F′(x),
∴F′(x)为奇函数,故F′(x)的图象关于原点对称,(4)正确;
故
∵F′(x)=2xf′(x2-4)-2xf′(4-x2),∴F′(2)=4f′(0)-4f′(0)=0,F′(-2)=-4f′(0)+4f′(0)=0,
故(2)正确;
F′(0)=0?f′(-4)-0?f′(4)=0,故(3)正确;
∵F′(-x)=-2xf′(x2-4)+2xf′(4-x2)=-[2xf′(x2-4)-2xf′(4-x2)]=-F′(x),
∴F′(x)为奇函数,故F′(x)的图象关于原点对称,(4)正确;
故
全部回答
- 1楼网友:未来江山和你
- 2021-12-20 13:50
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯