永发信息网

什么是因式?

答案:8  悬赏:0  手机版
解决时间 2021-03-07 06:54
什么是因式?
最佳答案
原式=3(5xy+2)²
朋友,请采纳正确答案,你们只提问,不采纳正确答案,回答都没有劲!!!
朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
全部回答
如果多项式 f(x) 能够被非零多项式 g(x) 整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。当然,这时 q(x) 也是 f(x) 的一个因式,并且 q(x) 、g(x) 的次数都不会大于 f(x) 的次数。
多项式被另一多项式整除,后者即是前者的因式
eg:2和a+b为2(a+b)的因式
1、因式的定义:
如果多项式 f(x) 能够被整式 g(x)整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。
注意:g(x)≠0,但 q(x) 可以等于0(当 f(x)=0 时)。
一个数也可以看做一个因式。
2、分解因式
(1)定义
把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解。
(2)可以直接计算,或运用公式。
常用的公式有:a^2-b^2=(a+b)(a-b)
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
注:通常情况下,分解因式要求分解彻底,即所有因式均无法再次分解因式。
多项式被另一多项式整除,后者即是前者的因式。
如果多项式 f(x) 能够被整式 g(x) 整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。当然,这时 q(x) 也是 f(x) 的一个因式,并且 q(x) 、g(x) 的次数都不会大于 f(x) 的次数。
分解因式定义
把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解。
可以直接计算,或运用公式。
常用的公式有:a^2-b^2=(a+b)(a-b)
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
a^3+b^3=(a+b)(a^2-ab+b^2).
a^3-b^3=(a-b)(a^2+ab+b^2).
注:通常情况下,分解因式要求分解彻底,即所有因式均无法再次分解因式。
概念编辑
如果多项式 f(x) 能够被整式 g(x)整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式
g(x)≠0,但 q(x) 可以等于0(当 f(x)=0 时)。
一个数也可以看做一个因式。
分解因式编辑
定义
把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解。
可以直接计算,或运用公式。
常用的公式有:a^2-b^2=(a+b)(a-b)
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
a^3+b^3=(a+b)(a^2-ab+b^2).
a^3-b^3=(a-b)(a^2+ab+b^2).
注:通常情况下,分解因式要求分解彻底,即所有因式均无法再次分解因式。
因式分解因式的方法
编辑
因式⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
因式⑵公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2)。
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2)。
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)
因式⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法。
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式。
因式⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形。
因式⑸十字相乘法
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d).
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
因式⑹应用因式定理
如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
在数的乘法中,每一个数都叫因数。而在式的乘法中,每一个式都叫因式。追问那2×(a+b)中,哪些是因式?追答2 (a+b)

概念:
因式是指多项式被另一多项式整除,后者即是前者的因式,如果多项式 f(x) 能够被整式 g(x) 整除,即可以找出一个多项式 q(x) ,使得 f(x)=q(x)·g(x),那么g(x) 就叫做 f(x) 的一个因式。当然,这时 q(x) 也是 f(x) 的一个因式,并且 q(x) 、g(x) 的次数都不会大于 f(x) 的次数。
分解因式:
定义
把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解。
常用的公式有:a^2-b^2=(a+b)(a-b)
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
a^3+b^3=(a+b)(a^2-ab+b^2).
a^3-b^3=(a-b)(a^2+ab+b^2).
分解因式的方法:

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2)。
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2)。
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]
a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法。
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式。

⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形。

⑸十字相乘法
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d).
a -----/b ac=k bd=n
c /-----d ad+bc=m
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。

⑹应用因式定理
如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
车上摆件玻璃制品在车里经得70度高温度吗?
读图,完成下列问题。(1)此图是(填二分或
第一次在广州南站坐地铁到广州白云机场 怎么
请教如何接待伊朗客户
经济学中,为什么稀缺和过剩并存?
用移动手机连接电信无线局域网???
福建省闽西地质大队地址在哪,我要去那里办事
好久没有认识人了 有人认识认识吗
唯品会里的唯品花不怕买家不还款吗 掏县 力口
qq时尚都市辅助工具谁有啊?QQ928400626
站在什么地方,不管向哪个方向走总是向北的
介绍下初中买什么初中英语语法书讲解要点+练
兄弟酒店我想知道这个在什么地方
开机怎么选择系统
手机进入支付宝,屏幕老闪,,,
推荐资讯
新开口路/津围线(路口)这个地址在什么地方,
白天一整天玩手机会猝死吗?
办车贷的银行有权利给车指定保险公司吗?这样
玻璃在木门窗扇上安装,采用油灰,是用何种油
银杏叶最美 500字作文
晕车需要打针吗!
好阳光餐馆在哪里啊,我有事要去这个地方
是不是一个人太实在对别人太好别人都拿当傻子
手机的图库不显示图片,点击显示无缩略图,而
一个摄影师自拍双手 别人问 这张照片是怎么拍
家人在分组里可以表示什么?
天然土特产地址在哪,我要去那里办事
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?