高考数学:在△ABC中,内角A,B,C所对的边分别为abc,a=2√2,b=2,cosA=1/2
答案:2 悬赏:0 手机版
解决时间 2021-11-26 17:11
- 提问者网友:我的未来我做主
- 2021-11-25 16:53
高考数学:在△ABC中,内角A,B,C所对的边分别为abc,a=2√2,b=2,cosA=1/2
最佳答案
- 五星知识达人网友:一把行者刀
- 2021-11-25 18:05
(1)ΔABC中
cosA=1/2,A=π/3,sinA=√3/2
sinB=(b/a)sinA=(2/(2√3))(√3/2)=1/2
且B(2)C=π-(π/3)-(π/6)=π/2
c=b/sinB=2/(1/2)=4
f(x)=cos2x+2(sin(x+π/6))^2
=cos2x+1-cos(2x+π/3)
=cos((2x+π/6)-π/6)-cos((2x+π/6)+π/6)+1
=2sin(2x+π/6)sin(π/6)+1
=sin(2x+π/6)+1
2kπ-π/2≤2x+π/6≤2kπ-π/2,k∈Z
kπ-π/3≤x≤kπ+π/6,k∈Z 时x 在单增区间中.
所以f(x)的单增区间是[kπ-π/3,kπ+π/6],k∈Z
希望能帮到你!
cosA=1/2,A=π/3,sinA=√3/2
sinB=(b/a)sinA=(2/(2√3))(√3/2)=1/2
且B(2)C=π-(π/3)-(π/6)=π/2
c=b/sinB=2/(1/2)=4
f(x)=cos2x+2(sin(x+π/6))^2
=cos2x+1-cos(2x+π/3)
=cos((2x+π/6)-π/6)-cos((2x+π/6)+π/6)+1
=2sin(2x+π/6)sin(π/6)+1
=sin(2x+π/6)+1
2kπ-π/2≤2x+π/6≤2kπ-π/2,k∈Z
kπ-π/3≤x≤kπ+π/6,k∈Z 时x 在单增区间中.
所以f(x)的单增区间是[kπ-π/3,kπ+π/6],k∈Z
希望能帮到你!
全部回答
- 1楼网友:人间朝暮
- 2021-11-25 19:39
解:由1+2cos(B+C)=0和B+C=π-A,得1-2cosA=0,,
再由正弦定理,得,
由b<a知B<A,所以B不是最大角,,
从而,
由上述结果知,
设边BC上的高为h,则有。
再由正弦定理,得,
由b<a知B<A,所以B不是最大角,,
从而,
由上述结果知,
设边BC上的高为h,则有。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯